多智能体系统——竞争网络下异构多智能体系统的分组一致性问题 Group consensus of heterogeneous multi-agent system (附论文链接+源码Matlab)

该研究探讨了在竞争环境中的异构多智能体系统,包括一阶和二阶智能体,如何实现分组一致性。通过提出新的分布式控制协议,即使存在时间延迟,也能确保系统的分组一致性。理论分析和数值模拟验证了协议的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点上方链接下载,找需要的资源链接

多智能体系统——竞争网络下异构多智能体系统的分组一致性问题 (附论文链接+源码Matlab)

Yu F, Ji L, Yang S. Group consensus for a class of heterogeneous multi-agent networks in the competition systems[J]. Neurocomputing, 2020, 416: 165-171.

研究内容:
  研究了连续时间的异构多智能体系统在竞争网络下的分组一致性问题。系统由两类智能体组成——一阶智能体和二阶智能体。与现有研究不同的是,提出了一种新颖的分布式分组一致性控制协议,智能体之间互为竞争的关系。基于稳定性理论、频域方法,讨论了在无时间延迟和有时间延迟影响下的两种系统分组一致性的情形。此外,从理论上建立了实现分组一致性的可容忍的时间延迟上界。通过一系列的数值模拟验证了理论的研究。

系统模型:

{ ξ ˙ i ( t ) = ζ i ( t ) , ξ ˙ i ( t ) = u i ( t ) , i ∈ s ^ 1 , ξ ˙ i ( t ) = u i ( t ) ,      i ∈ s ^ 2 . \begin{gathered} \begin{cases}\dot{\xi}_{i}(t)=\zeta_{i}(t),\\ \dot{\xi}_{i}(t)=u_{i}(t),\quad i\in\hat{s}_{1},\end{cases} \\ \dot{\xi}_{i}(t)=u_{i}(t),\quad\;\; i\in\hat{s}_{2}. \end{gathered} {ξ˙i(t)=ζi(t),ξ˙i(t)=ui(t),is^1,ξ˙i(t)=ui(t),is^2.

控制协议(无时间延迟):

对于一阶智能体:
{ ζ ˙ i ( t ) = − β [ ∑ j ∈ N i a i j [ ζ i ( t ) + ζ j ( t ) ] ] + ω i ( t ) , ω ˙ i ( t ) = − α [ ∑ j ∈ N i a i j [ ζ i ( t ) + ζ j ( t ) ] ] , ∀ i ∈ s ^ 2 \begin{cases}{\dot{\zeta}_{i}(t)=-\beta\left[\sum_{j\in N_{i}}a_{i j}[\zeta_{i}(t)+\zeta_{j}(t)]\right]+\omega_{i}(t),}\\ {\dot{\omega}_{i}(t)=-\alpha\left[\sum_{j\in N_{i}}a_{i j}[\zeta_{i}(t)+\zeta_{j}(t)]\right],\quad\forall i\in \hat{s}_{2}}\end{cases} ζ˙i(t)=β[jNiaij[ζi(t)+ζj(t)]]+ωi(t),ω˙i(t)=α[jNiaij[ζi(t)+ζj(t)]],is^2


对于二阶智能体: { ξ i ( t ) = ζ i ( t ) , ζ ˙ i ( t ) = − α [ ∑ j ∈ N i a i j [ ζ i ( t ) + ζ j ( t ) ] ] − β [ ∑ j ∈ N i a j [ ζ i ( t ) + ζ j ( t ) ] ] , ∀ i ∈ s ^ 1 , \begin{aligned} &\left\{\begin{array}{l}{{\xi_{i}(t)=\zeta_{i}(t),}}\\ {{\dot{\zeta}_{i}(t)=-\alpha\left[\sum_{j\in\mathcal{N}_{i}}a_{i j}[\zeta_{i}(t)+\zeta_{j}(t)]\right]-\beta\left[\sum_{j\in\mathcal{N}_{i}}a_{j}[\zeta_{i}(t)+\zeta_{j}(t)]\right],}} {{\forall i\in\hat{s}_{1},}}\end{array}\right. \end{aligned} {ξi(t)=ζi(t),ζ˙i(t)=α[jNiaij[ζi(t)+ζj(t)]]β[jNiaj[ζi(t)+ζj(t)]],is^1,

控制协议(无时间延迟):

对于一阶智能体:
{ ζ ˙ i ( t ) = − β [ ∑ j = N a i j [ ζ i ( t − τ ) + ζ j ( t − τ ) ] ] + ω i ( t ) , ω ˙ i ( t ) = − α [ ∑ j ∈ N a j [ ζ i ( t − τ ) + ζ j ( t − τ ) ] ] . ∀ i ∈ s ^ 2 . \begin{cases}\dot{\zeta}_i(t)=-\beta\left[\sum_{j=N}a_{ij}[\zeta_i(t-\tau)+\zeta_j(t-\tau)]\right]+\omega_i(t),\\ \\ \dot{\omega}_i(t)=-\alpha\left[\sum_{j\in\mathcal{N}}a_j[\zeta_i(t-\tau)+\zeta_j(t-\tau)]\right].\quad\forall i\in\hat{s}_2.\end{cases} ζ˙i(t)=β[j=Naij[ζi(tτ)+ζj(tτ)]]+ωi(t),ω˙i(t)=α[jNaj[ζi(tτ)+ζj(tτ)]].is^2.


对于二阶智能体:
{ ξ i ( t ) = ζ i ( t ) , ζ ˙ i ( t ) = − α [ ∑ j ∈ N i a i j [ ζ i ( t − τ ) + ζ j ( t − τ ) ] ] − β [ ∑ j ∈ N i a j [ ζ i ( t − τ ) + ζ j ( t − τ ) ] ] , ∀ i ∈ s ^ 1 , \begin{aligned} &\left\{\begin{array}{l}{{\xi_{i}(t)=\zeta_{i}(t),}}\\ {{\dot{\zeta}_{i}(t)=-\alpha\left[\sum_{j\in\mathcal{N}_{i}}a_{i j}[\zeta_{i}(t-\tau)+\zeta_{j}(t-\tau)]\right]-\beta\left[\sum_{j\in\mathcal{N}_{i}}a_{j}[\zeta_{i}(t-\tau)+\zeta_{j}(t-\tau)]\right],}} {{\forall i\in\hat{s}_{1},}}\end{array}\right. \end{aligned} {ξi(t)=ζi(t),ζ˙i(t)=α[jNiaij[ζi(tτ)+ζj(tτ)]]β[jNiaj[ζi(tτ)+ζj(tτ)]],is^1,

定理:

当满足 α 2 + β 2 ω i 0 2 < ω i 0 2 Re 2 ( λ i ) + Im 2 ( λ i ) , i ∈ s \sqrt{\alpha^2+\beta^2\omega_{i0}^2}<\frac{\omega_{i0}^2}{\sqrt{\text{Re}^2(\lambda_i)+\text{Im}^2(\lambda_i)}},i\in s α2+β2ωi02 <Re2(λi)+Im2(λi) ωi02,is ω i 0 \omega_{i0} ωi0满足 α tan ⁡ ω i 0 τ = β ω i 0 \alpha\tan\omega_{i0}\tau=\beta\omega_{i0} αtanωi0τ=βωi0,异构多智能体系统可实现渐近时间分组一致性。
  时间延迟满足: τ < min ⁡ λ i ≠ 0 { arctan ⁡ ( β α ϕ ~ ) ϕ ~ } , i ∈ s . \tau<\min\limits_{\lambda_i\neq0}\bigg\{\dfrac{\arctan(\frac{\beta}{\alpha}\tilde{\phi})}{\tilde{\phi}}\bigg\},i\in s. τ<λi=0min{ϕ~arctan(αβϕ~)},is.
  其中 ϕ ~ = ∣ λ i ∣ 2 β 2 + ∣ λ i ∣ 4 β 4 + 4 ∣ λ i ∣ 2 α 2 2 \tilde{\phi}=\sqrt{\frac{|\lambda_i|^2\beta^2+\sqrt{|\lambda_i|^4\beta^4+4|\lambda_i|^2\alpha^2}}{2}} ϕ~=2λi2β2+λi4β4+4∣λi2α2

//仿真案例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

链接🔗:Matlab

进入主页,可以私信
在这里插入图片描述

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值