本书集中讲解最受欢迎和最新的自然启发算法,用于解决多目标优化问题。
This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives.
首先,给出了多目标问题的基本概念和基本定义,以及解决这些问题的不同范式。
Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them.
然后对多目标粒子群优化算法、多目标遗传算法和多目标灰狼优化算法的理论基础、文献综述和应用进行了深入的阐述,任何研究领域的读者都可以使用它们来解决多目标优化问题。
It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem.
本书在一个专门的网页上提供了所有建议算法的源代码。
The book provides the source codes for all the proposed algorithms on a dedicated webpage.
Introduction to Multi-objective Optimization
Seyedali Mirjalili, Jin Song Dong
Pages 1-9
What is Really Multi-objective Optimization?
Seyedali Mirjalili, Jin Song Dong
Pages 11-20
Multi-objective Particle Swarm Optimization
Seyedali Mirjalili, Jin Song Dong
Pages 21-36
Non-dominated Sorting Genetic Algorithm
Seyedali Mirjalili, Jin Song Dong
Pages 37-45
Multi-objective Grey Wolf Optimizer
Seyedali Mirjalili, Jin Song Dong
Pages 47-58
更多精彩文章请关注公众号: