【Mark Schmidt课件】凸优化MATLAB实战训练之可微优化

本课件包含内容如下:

  1. 研究动机:基于不同模型的参数估计Motviation: Parameter Estimation with Different Models

  2. MATLAB仿真环境构建Set Up

  3. 准备仿真数据Preparing a Data Set

  4. L2-正则化逻辑回归L2-Regularized Logistic Regression

  5. 导数检验Derivative-Checking

  6. 基本梯度法A Basic Gradient Method

  7. Armijo回溯线搜索Armijo Backtracking Line-Search

  8. Hermite多项式插值Hermite Polynomial Interpolation

  9. 内斯特罗夫外推Nesterov Extrapolation

  10. 牛顿法Newton’s Method

  11. 斜向最陡下降法Diagonally-Scaled Steepest Descent

  12. Barzilai-Borwein

  13. 非线性共轭梯度法Non-Linear Conjugate Gradient

  14. 拟牛顿法Quasi-Newton Methods

  15. Hessian-Free牛顿法Hessian-Free Newton

  16. 知识扩展

在这里插入图片描述

在这里插入图片描述

课件及全部MATLAB源码下载地址:

http://page2.dfpan.com/fs/flcjc221429196b8a72/

更多精彩文章请关注微信号:在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值