【读书1】【2017】MATLAB与深度学习——示例:多元分类(1)

在这里插入图片描述
图4-13 新数据集的神经网络模型The neural network modelfor this new dataset

每个图像就是一个矩阵,我们设置输入节点数量为5 x 5 = 25。

As each image is set on a matrix, we set 25input nodes.

此外,由于我们有五个数字来进行分类,网络包含五个输出节点。

In addition, as we have five digits toclassify, the network contains five output nodes.

使用softmax函数作为输出节点的激活函数。

The softmax function is used as theactivation function of the output node.

隐藏层有50个节点,sigmoid函数用作激活函数。

The hidden layer has 50 nodes and thesigmoid function is used as the activation function.

MultiClass函数利用SGD方法实现多元分类的学习规则。

The function MultiClass implements thelearning rule of multiclass classification using the SGD method.

它采用权重和训练数据作为输入参数,并返回训练后的权重。

It takes the input arguments of the weightsand training data and returns the trained weights.

[W1,W2] = MultiClass(W1, W2, X, D)

其中W1和W2分别为输入-隐藏层和隐藏-输出层之间的权重矩阵。

where W1 and W2 are the weight matrices ofthe input-hidden and hidden-output layers, respectively.

X和D分别是训练数据的输入和正确输出。

X and D are the input and correct output ofthe training data, respectively.

下面的列表显示了实现MultiClass函数的MultiClass.m文件。

The following listing shows theMultiClass.m file, which implements the function MultiClass.

function [W1, W2] = MultiClass(W1, W2, X,D)

alpha = 0.9;

N = 5;

   fork = 1:N

          x = reshape(X(:, :, k), 25, 1);

          d = D(k, :)';

          v1= W1*x;

          y1= Sigmoid(v1);

          v= W2*y1;

          y= Softmax(v);

          e= d - y;

          delta= e;

          e1= W2'*delta;

          delta1= y1.*(1-y1).*e1;

          dW1 = alpha*delta1*x';

          W1 = W1 + dW1;

          dW2 = alpha*delta*y1';

          W2 = W2 + dW2;

   end

end

该代码与第三章“交叉熵函数”部分中的示例代码具有相同的过程,通过对训练数据应用增量规则,计算权重更新dW1和dW2,并调整神经网络的权重。

This code follows the same procedure asthat of the example code in the “Cross Entropy Function” section in Chapter 3,which applies the delta rule to the training data, calculates the weight updates,dW1 and dW2, and adjusts the neural network’s weights.

然而,这里的代码又稍有不同,因为它使用函数softmax计算输出,并调用函数改变矩阵维数以实现训练数据的导入。

However, this code slightly differs in thatit uses the function softmax for the calculation of the output and calls thefunction reshape to import the inputs from the training data.

x =reshape(X(:, :, k), 25, 1);

输入变量X包含堆叠的二维图像数据。

The input argument X contains the stackedtwo-dimensional image data.

这意味着X是一个5 x 5 x 5的三维矩阵。

This means that X is a 5 x 5 x 5three-dimensional matrix.

因此,reshape函数中的第一个变量X(:, :, k),表示第个图像数据中的5 x 5矩阵。

Therefore, the first argument of thefunction reshape, X(:, :, k) indicates the 5 x 5 matrix that contains the -th image data.

由于该神经网络只能输入向量格式,因此二维矩阵应转换为25 x 1的向量。

As this neural network is compatible withonly the vector format inputs, the two-dimensional matrix should be transformedinto a 25 x 1 vector.

函数reshape实现的就是这种转换功能。

The function reshape performs thistransformation.

——本文译自Phil Kim所著的《Matlab Deep Learning》

更多精彩文章请关注微信号:在这里插入图片描述

MATLAB神经网络43个案例分析源代码&数据 《MATLAB 神经网络43个案例分析》目录 第1章 BP神经网络的数据分类——语音特征信号分类 第2章 BP神经网络的非线性系统建模——非线性函数拟合 第3章 遗传算法优化BP神经网络——非线性函数拟合 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模 第6章 PID神经元网络解耦控制算法——多变量系统控制 第7章 RBF网络的回归--非线性函数回归的实现 第8章 GRNN网络的预测----基于广义回归神经网络的货运量预测 第9章 离散Hopfield神经网络的联想记忆——数字识别 第10章 离散Hopfield神经网络的分类——高校科研能力评价 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算 第12章 初始SVM分类与回归 第13章 LIBSVM参数实例详解 第14章 基于SVM的数据分类预测——意大利葡萄酒种类识别 第15章 SVM的参数优化——如何更好的提升分类器的性能 第16章 基于SVM的回归预测分析——上证指数开盘指数预测. 第17章 基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测 第18章 基于SVM的图像分割-真彩色图像分割 第19章 基于SVM的手写字体识别 第20章 LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用 第21章 自组织竞争网络在模式分类中的应用—患者癌症发病预测 第22章 SOM神经网络的数据分类--柴油机故障诊断 第23章 Elman神经网络的数据预测----电力负荷预测模型研究 第24章 概率神经网络的分类预测--基于PNN的变压器故障诊断 第25章 基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选 第26章 LVQ神经网络的分类——乳腺肿瘤诊断 第27章 LVQ神经网络的预测——人脸朝向识别 第28章 决策树分类器的应用研究——乳腺癌诊断 第29章 极限学习机在回归拟合及分类问题中的应用研究——对比实验 第30章 基于随机森林思想的组合分类器设计——乳腺癌诊断 第31章 思维进化算法优化BP神经网络——非线性函数拟合 第32章 小波神经网络的时间序列预测——短时交通流量预测 第33章 模糊神经网络的预测算法——嘉陵江水质评价 第34章 广义神经网络的聚类算法——网络入侵聚类 第35章 粒子群优化算法的寻优算法——非线性函数极值寻优 第36章 遗传算法优化计算——建模自变量降维 第37章 基于灰色神经网络的预测算法研究——订单需求预测 第38章 基于Kohonen网络的聚类算法——网络入侵聚类 第39章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类 第40章 动态神经网络时间序列预测研究——基于MATLAB的NARX实现 第41章 定制神经网络的实现——神经网络的个性化建模与仿真 第42章 并行运算与神经网络——基于CPU/GPU的并行神经网络运算 第43章 神经网络高效编程技巧——基于MATLAB R2012b新版本特性的探讨
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值