动手学深度学习56 GRU门控循环单元

门控循环单元 GRU

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码

1. 获取数据集数据

import torch
from torch import nn
from d2l import torch as d2l
import collections
import re
import random



d2l.DATA_HUB['time_machine'] = (d2l.DATA_URL + 'timemachine.txt', '090b5e7e70c295757f55df93cb0a180b9691891a')

def read_time_machine():
    """将时间机器数据集加载到文本行的列表中"""
    with open(d2l.download('time_machine'), 'r') as f:
        lines = f.readlines()
    # 替换掉所有符号 转为小写
    return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines]

def tokenize(lines, token='word'):
    """将文本行拆分为单词或字符词元"""
    if token == 'word':  # 一个单词
        return [line.split() for line in lines]
    elif token == 'char':  # 一个字符  字母
        return [list(line) for line in lines]
    else:
        print('错误:未知词元类型:' + token)

class Vocab:
    """文本词表"""
    def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):
        if tokens is None:
            tokens = []
        if reserved_tokens is None:
            reserved_tokens = []
        # 按出现频率排序
        counter = count_corpus(tokens)
        self._token_freqs = sorted(counter.items(), key=lambda x: x[1], reverse=True)
        # 未知词元的索引为0
        self.idx_to_token = ['<unk>'] + reserved_tokens
        self.token_to_idx = {token: idx for idx, token in enumerate(self.idx_to_token)}
        for token, freq in self._token_freqs:
            if freq < min_freq:
                break
            if token not in self.token_to_idx:
                self.idx_to_token.append(token)
                self.token_to_idx[token] = len(self.idx_to_token) - 1

    def __len__(self):
        return len(self.idx_to_token)

    def __getitem__(self, tokens):
        if not isinstance(tokens, (list, tuple)):
            return self.token_to_idx.get(tokens, self.unk)
        return [self.__getitem__(token) for token in tokens]

    def to_tokens(self, indices):
        if not isinstance(indices, (list, tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]

    @property
    def unk(self):  # 未知词元的索引为0
        return 0

    @property
    def token_freqs(self):
        return self._token_freqs

def count_corpus(tokens):
    """统计词元的频率"""
    # 这里的tokens是1D列表或2D列表
    if len(tokens) == 0 or isinstance(tokens[0], list):
        # 将词元列表展平成一个列表
        tokens = [token for line in tokens for token in line]
    return collections.Counter(tokens)

def load_corpus_time_machine(max_tokens=-1):
    """返回时光机器数据集的词元索引列表和词表"""
    lines = read_time_machine()
    tokens = tokenize(lines, 'char') # 按字符-字母分
    vocab = Vocab(tokens)
    # 因为时光机器数据集中的每个文本行不一定是一个句子或一个段落,
    # 所以将所有文本行展平到一个列表中
    corpus = [vocab[token] for line in tokens for token in line]
    if max_tokens > 0:
        corpus = corpus[:max_tokens]
    return corpus, vocab

def seq_data_iter_sequential(corpus, batch_size, num_steps):
    """使用顺序分区生成一个小批量子序列"""
    # 从随机偏移量开始划分序列
    offset = random.randint(0, num_steps)
    num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
    Xs = torch.tensor(corpus[offset: offset + num_tokens])
    Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])
    Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
    num_batches = Xs.shape[1] // num_steps
    for i in range(0, num_steps * num_batches, num_steps):
        X = Xs[:, i: i + num_steps]
        Y = Ys[:, i: i + num_steps]
        yield X, Y

class SeqDataLoader:
    """加载序列数据的迭代器"""
    def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):
        if use_random_iter:
            self.data_iter_fn = seq_data_iter_random
        else:
            self.data_iter_fn = seq_data_iter_sequential
        self.corpus, self.vocab = load_corpus_time_machine(max_tokens)
        self.batch_size, self.num_steps = batch_size, num_steps

    def __iter__(self):
        return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)

def load_data_time_machine(batch_size, num_steps, use_random_iter=False, max_tokens=10000):
    """返回时光机器数据集的迭代器和词表"""
    data_iter = SeqDataLoader(
        batch_size, num_steps, use_random_iter, max_tokens)
    return data_iter, data_iter.vocab

2. RNN模型定义及训练及预测流程

# RNN模型
# 包装rnn函数
class RNNModelScratch:
    """从零开始实现的循环神经网络模型"""
    def __init__(self, vocab_size, num_hiddens, device,
                 get_params, init_state, forward_fn):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward_fn
    # 重写 __call__ 或者 写forward函数都行
    def __call__(self, X, state):
        # x load的数据集 (批量大小,时间步数) onehot 整型变成浮点型
        X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
        return self.forward_fn(X, state, self.params)

    def begin_state(self, batch_size, device):
        return self.init_state(batch_size, self.num_hiddens, device)

# 预测
def predict_ch8(prefix, num_preds, net, vocab, device):
    """
    prefix: 给定句子的开头
    num_preds: 预测多少词
    在prefix后面生成新字符"""
    state = net.begin_state(batch_size=1, device=device)
    outputs = [vocab[prefix[0]]]
    get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
    for y in prefix[1:]:  # 预热期
        _, state = net(get_input(), state)
        outputs.append(vocab[y])
    for _ in range(num_preds):  # 预测num_preds步
        y, state = net(get_input(), state)
        # 多分类 拿出最大概率的索引
        outputs.append(int(y.argmax(dim=1).reshape(1)))
    # token转成字符串拼接输出
    return ''.join([vocab.idx_to_token[i] for i in outputs])

# 辅助函数 rnn 梯度乘法太多 容易梯度爆炸
def grad_clipping(net, theta):
    """裁剪梯度"""
    # 拿出所有参与训练层的参数
    if isinstance(net, nn.Module):
        params = [p for p in net.parameters() if p.requires_grad]
    else:
        params = net.params
    # 把所有层的梯度拉成一个长向量,计算L2
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    # 梯度太大做映射投影 梯度小不做处理
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm

# 训练一个epoch
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
    """训练网络一个迭代周期(定义见第8章)
    use_random_iter 随机iterate 下一个batch的样本和上一个batch的样本没有关系  不随机的话 两个batch的样本是相邻的
    """
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2)  # 训练损失之和,词元数量
    for X, Y in train_iter:
        if state is None or use_random_iter:
            # 在第一次迭代或使用随机抽样时初始化state
            state = net.begin_state(batch_size=X.shape[0], device=device)
        else:
            if isinstance(net, nn.Module) and not isinstance(state, tuple):
                # state对于nn.GRU是个张量
                # detach_()不改变state的值
                state.detach_()
            else:
                # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
                for s in state:
                    s.detach_()
        y = Y.T.reshape(-1)
        X, y = X.to(device), y.to(device)
        y_hat, state = net(X, state)
        l = loss(y_hat, y.long()).mean()
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)
            updater.step()
        else:
            l.backward()
            grad_clipping(net, 1)
            # 因为已经调用了mean函数
            updater(batch_size=1)
        metric.add(l * y.numel(), y.numel())
    # crossentropy 交叉熵 --> 困惑度 做个指数
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()

def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):
    """训练模型(定义见第8章)"""
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs])
    # 初始化
    if isinstance(net, nn.Module):
        updater = torch.optim.SGD(net.parameters(), lr)
    else:
        updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
    # 训练和预测
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)
        if (epoch + 1) % 10 == 0:
            print(predict('time traveller'))
            animator.add(epoch + 1, [ppl])
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))

3. 从零开始实现

import torch
from torch import nn
from d2l import torch as d2l
import collections
import re
import random
import math
from torch.nn import functional as F

batch_size, num_steps = 32, 35
train_iter, vocab = load_data_time_machine(batch_size, num_steps)
def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xz, W_hz, b_z = three()  # 更新门参数
    W_xr, W_hr, b_r = three()  # 重置门参数
    W_xh, W_hh, b_h = three()  # 候选隐状态参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

# gru 公式计算  和ppt讲义公式对应
def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = RNNModelScratch(len(vocab), num_hiddens, device, get_params,
                            init_gru_state, gru)
train_ch8(model, train_iter, vocab, lr, num_epochs, device)
困惑度 1.1, 34460.6 词元/秒 cuda:0
time traveller with a slight accession ofcheerfulness really thi
travelleryou can show black is white by argument said filby

在这里插入图片描述

4. 简洁实现

class RNNModel(nn.Module):
    """循环神经网络模型"""
    def __init__(self, rnn_layer, vocab_size, **kwargs):
        super(RNNModel, self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            # 构造自己的输出层
            self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)

    def forward(self, inputs, state):
        X = F.one_hot(inputs.T.long(), self.vocab_size)
        X = X.to(torch.float32)
        # Y 中间隐藏层的Y 时间步数,batch大小,隐藏层大小
        Y, state = self.rnn(X, state)
        # 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
        # 它的输出形状是(时间步数*批量大小,词表大小)。
        output = self.linear(Y.reshape((-1, Y.shape[-1])))
        return output, state

    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return  torch.zeros((self.num_directions * self.rnn.num_layers,
                       batch_size, self.num_hiddens),
                       device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device))

# 初始化

num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = RNNModel(gru_layer, len(vocab))
model = model.to(device)
train_ch8(model, train_iter, vocab, lr, num_epochs, device)
困惑度 1.0, 228091.0 词元/秒 cuda:0
time travelleryou can show black is white by argument said filby
travelleryou can show black is white by argument said filby

在这里插入图片描述

QA

在这里插入图片描述
1 网络结构一样,但是w是可以学的。训练好之后可视化,权重的变化。
2 relu激活函数可以试试。
3 z=0 跟以前一样更新。使用z,让模型可以绕过当前x更新
4 GRU数值稳定性比RNN要高。参数多不见得会梯度爆炸。grad-clipping 1 5 10比较常见
5 R 看多少H_t-1的数据 尽量多去看x_t reset-要不要忘记过去的信息-遗忘掉
Z 有多少概率不去看x_t,直接看H_t-1的数据 尽量不去看x_t 要不要根据x-t更新参数
6 和MLP没区别 128 256【多用】
7 0.01方差 比较通用 不那么深的网络效果还可以

在这里插入图片描述

9 建议不要用rnn,lstm gru都可以。拍脑袋:长度最好不要超过100.
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值