文章目录
1. HDFS 介绍
1.1 HDFS 背景及定义
-
HDFS 产生背景
随着数据量越来越大,在一个操作系统管辖的范围内存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS 只是分布式文件管理系统中的一种。
-
HDFS 概念
HDFS(Hadoop Distributed File System),它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
HDFS 的设计适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。
1.2 HDFS 的优缺点
-
优点
(1)高容错性
① 数据自动保存多个副本。它通过增加副本的形式,提高容错性。
② 某一个副本丢失以后,它可以自动恢复。(2)适合大数据处理
① 数据规模:能够处理数据规模达到 GB、TB、甚至 PB 级别的数据。
② 文件规模:能够处理百万规模以上的文件数量,数量相当之大。(3)流式数据访问,它能保证数据的一致性。
(4)可构建在廉价机器上,通过多副本机制,提高可靠性。 -
缺点
(1)不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
(2)无法高效的对大量小文件进行存储。① 存储大量小文件的话,它会占用 NameNode 大量的内存来存储文件、目录和块信息。这样是不可取的,因为 NameNode 的内存总是有限的。
② 小文件存储的寻道时间会超过读取时间,它违反了 HDFS 的设计目标。(3)不支持并发写入、文件随机修改
① 一个文件只能有一个写,不允许多个线程同时写。
② 仅支持数据 append(追加),不支持文件的随机修改。
1.3 HDFS 组成架构
-
Client: 就是客户端。
(1)文件切分。文件上传 HDFS 的时候,Client 将文件切分成一个一个的 Block,然后进行存储。
(2)与 NameNode 交互,获取文件的位置信息。
(3)与 DataNode 交互,读取或者写入数据。
(4)Client 提供一些命令来管理 HDFS,比如启动或者关闭 HDFS。
(5)Client 可以通过一些命令来访问 HDFS。 -
NameNode: 就是 Master,它是一个主管、管理者。
(1)管理 HDFS 的名称空间。
(2)管理数据块(Block)映射信息。
(3)配置副本策略。
(4)处理客户端读写请求。 -
DataNode: 就是 Slave,NameNode 下达命令,DataNode 执行实际的操作。
(1)存储实际的数据块。
(2)执行数据块的读/写操作。 -
SecondaryNameNode: 并非 NameNode 的热备。当 NameNode 挂掉时,它并不能马上替换 NameNode 并提供服务。
(1)辅助 NameNode,分担其工作量。
(2)定期合并 Fsimage 和 Edits,并推送给 NameNode。
(3)在紧急情况下,可辅助恢复 NameNode。
1.4 HDFS 文件块大小
-
HDFS 中的文件在物理上是分块存储(block),块的大小可以通过配置参数(dfs.blocksize)来规定,默认大小在 hadoop2.x 版本中是128M,老版本中是 64M。
-
HDFS 的块比磁盘的块大,其目的是为了最小化寻址开销。如果块设置得足够大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间。因而,传输 一个由多个块组成的文件的时间取决于磁盘传输速率。
-
如果寻址时间约为 10ms,而传输速率为 100MB/s,为了使寻址时间仅占传输时间的 1%,我们要将块大小设置约为 100MB。默认的块大小 128MB。
块的大小:10ms*100*100M/s = 100M思考: 为什么块的大小不能设置太小,也不能设置太大?
(1)HDFS 的块设置太小,会增加寻址时间,程序一直在找块的开始位置;
(2)如果块的设置太大,从磁盘传输的时间会明显大于定位这个块开始位置所需的时间。导致程序在处理这块数据时,会非常慢。总结: HDFS 块大小设置主要取决于磁盘传输速率。
2. HDFS 的 Shell 操作
-
基本语法
hadoop fs 具体命令 或 hdfs dfs 具体命令
-
命令大全
-
常用命令
命令 | 说明 | 举例 |
---|---|---|
-help | 输出这个命令参数 | hadoop fs -help rm |
-ls | 显示目录信息 | hadoop fs -ls / |
-mkdir | 在 HDFS 上创建目录 | hadoop fs -mkdir -p /usr/input |
-rmdir | 删除空目录 | hadoop fs -rmdir /test |
-rm | 删除文件或文件夹 | hadoop fs -rm /usr/input/test.txt |
-moveFromLocal | 从本地剪切粘贴到 HDFS | hadoop fs -moveFromLocal a.txt /usr/input |
-copyFromLocal | 从本地文件系统中拷贝文件到 HDFS 路径去 | hadoop fs -copyFromLocal c.txt / |
-copyToLocal | 从 HDFS 拷贝到本地 | hadoop fs -copyToLocal /usr/input/a.txt |
-appendToFile | 追加一个文件到已经存在的文件末尾 | hadoop fs -appendToFile b.txt /usr/input/a.txt |
-cat | 显示文件内容 | hadoop fs -cat /usr/input/a.txt |
-cp | 从 HDFS 的一个路径拷贝到 HDFS 的另一个路径 | hadoop fs -cp /usr/input/a.txt /f.txt |
-mv | 在 HDFS 目录中移动文件 | hadoop fs -mv /f.txt /usr/input/ |
-get | 等同于 copyToLocal | hadoop fs -get /usr/input/a.txt |
-put | 等同于 copyFromLocal | hadoop fs -put d.txt /usr/input/ |
-getmerge | 合并下载多个文件 | hadoop fs -getmerge /usr/input/* ./tmp.txt |
-tail | 显示一个文件的末尾 | hadoop fs -tail /usr/input/a.txt |
-chgrp 、-chmod、-chown | Linux 文件系统中的用法一样,修改文件所属权限 | hadoop fs -chmod 666 /usr/input/a.txt hadoop fs -chown lyh:dell /usr/input/a.txt |
-du | 统计文件夹的大小信息 | hadoop fs -du -s -h /usr/input hadoop fs -du -h /usr/input |
-setrep | 设置 HDFS 中文件的副本数量 | hadoop fs -setrep 10 /usr/input/a.txt |
说明: 这里设置的副本数只是记录在 NameNode 的元数据中,是否真的会有这么多副本,还得看DataNode 的数量。因为目前只有 3 台设备,最多也就 3 个副本,只有节点数的增加到 10 台时,副本数才能达到 10。
3. HDFS 客户端操作
3.1 HDFS 客户端环境准备
-
将 hadoop 的安装包解压到本系统到非中文路径(E:\hadoop\hadoop-2.7.7)
-
配置 HADOOP_HOME 环境变量
-
创建一个 Maven 工程 hdfs,创建一个 module 为 HdfsClientDemo
-
导入相应的依赖坐标 + 日志添加
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.7</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.7</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.7</version>
</dependency>
</dependencies>
- 在项目的 src/main/resources 目录下,新建一个文件,命名为 log4j.properties,在文件中填入
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
- 创建包 hdfs 并创建 HdfsClient 类
package hdfs;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
public class HDFSClient {
public static void main(String[] args) throws IOException, URISyntaxException, InterruptedException {
// 1.获取hdfs客户端对象
Configuration conf = new Configuration();
// conf.set("fs.defaultFS", "hdfs://master:9000");
// FileSystem fs = FileSystem.get(conf);
FileSystem fs = FileSystem.get