三维凹多面体分解为凸多面体的MATLAB实现

三维凹多面体分解为凸多面体的MATLAB实现

要将一个面数小于10的凹多面体分解为多个凸多面体,我们可以使用凸分解算法。以下是MATLAB实现方案:

方法概述

  1. 表示凹多面体:使用顶点和面列表表示输入的多面体
  2. 检测凹性:通过计算面法线和顶点位置关系确定凹边
  3. 分解策略:使用增量式凸分解或基于凹边的分割方法
  4. 实现分解:通过添加切割平面将凹多面体分割为凸部分

MATLAB代码实现

function convexParts = decomposeConcavePolyhedron(vertices, faces)
    % 检查输入多面体是否是凹的
    if isConvex(vertices, faces)
        convexParts = {vertices};
        return;
    end
    
    % 初始化凸部分集合
    convexParts = {};
    
    % 获取凹边
    concaveEdges = findConcaveEdges(vertices, faces);
    
    % 如果没有找到凹边,说明已经是凸的
    if isempty(concaveEdges)
        convexParts = {vertices};
        return;
    end
    
    % 选择第一个凹边进行分割
    edge = concaveEdges(1,:);
    
    % 找到分割平面
    [cutPlane, connectedFaces] = findCuttingPlane(vertices, faces, edge);
    
    % 使用分割平面将多面体分成两部分
    [vertices1, faces1, vertices2, faces2] = splitPolyhedron(vertices, faces, cutPlane);
    
    % 递归分解两个部分
    convexParts1 = decomposeConcavePolyhedron(vertices1, faces1);
    convexParts2 = decomposeConcavePolyhedron(vertices2, faces2);
    
    % 合并结果
    convexParts = [convexParts1, convexParts2];
end

function isConvex = isConvex(vertices, faces)
    % 计算每个面的法向量和中心点
    normals = zeros(length(faces), 3);
    centers = zeros(length(faces), 3);
    
    for i = 1:length(faces)
        faceVertices = vertices(faces{i}, :);
        v1 = faceVertices(2,:) - faceVertices(1,:);
        v2 = faceVertices(3,:) - faceVertices(1,:);
        normals(i,:) = cross(v1, v2);
        normals(i,:) = normals(i,:) / norm(normals(i,:));
        centers(i,:) = mean(faceVertices, 1);
    end
    
    % 检查所有顶点是否在所有面的同一侧
    isConvex = true;
    for i = 1:length(faces)
        for j = 1:size(vertices, 1)
            if all(j ~= faces{i}) % 不检查当前面的顶点
                vec = vertices(j,:) - centers(i,:);
                if dot(vec, normals(i,:)) < -1e-6
                    isConvex = false;
                    return;
                end
            end
        end
    end
end

function concaveEdges = findConcaveEdges(vertices, faces)
    % 找到所有边
    edges = [];
    for i = 1:length(faces)
        face = faces{i};
        for j = 1:length(face)
            v1 = face(j);
            v2 = face(mod(j, length(face)) + 1);
            edges = [edges; sort([v1, v2])];
        end
    end
    edges = unique(edges, 'rows');
    
    % 检查每条边是否是凹的
    concaveEdges = [];
    for i = 1:size(edges, 1)
        edge = edges(i,:);
        adjacentFaces = findAdjacentFaces(faces, edge);
        
        if length(adjacentFaces) == 2
            % 计算两个相邻面的法向量
            face1 = faces{adjacentFaces(1)};
            face2 = faces{adjacentFaces(2)};
            
            v1_1 = vertices(face1(2),:) - vertices(face1(1),:);
            v1_2 = vertices(face1(3),:) - vertices(face1(1),:);
            normal1 = cross(v1_1, v1_2);
            normal1 = normal1 / norm(normal1);
            
            v2_1 = vertices(face2(2),:) - vertices(face2(1),:);
            v2_2 = vertices(face2(3),:) - vertices(face2(1),:);
            normal2 = cross(v2_1, v2_2);
            normal2 = normal2 / norm(normal2);
            
            % 计算二面角
            dihedralAngle = atan2(norm(cross(normal1, normal2)), dot(normal1, normal2));
            
            % 如果二面角大于180度(π弧度),则是凹边
            if dihedralAngle > pi - 1e-6
                concaveEdges = [concaveEdges; edge];
            end
        end
    end
end

function adjacentFaces = findAdjacentFaces(faces, edge)
    % 找到共享给定边的面
    adjacentFaces = [];
    for i = 1:length(faces)
        face = faces{i};
        for j = 1:length(face)
            v1 = face(j);
            v2 = face(mod(j, length(face)) + 1);
            if (v1 == edge(1) && v2 == edge(2)) || (v1 == edge(2) && v2 == edge(1))
                adjacentFaces = [adjacentFaces, i];
                break;
            end
        end
    end
end

function [cutPlane, connectedFaces] = findCuttingPlane(vertices, faces, edge)
    % 简化方法:使用垂直于凹边并通过中点的平面
    % 实际应用中可能需要更复杂的策略
    
    v1 = vertices(edge(1),:);
    v2 = vertices(edge(2),:);
    midpoint = (v1 + v2) / 2;
    edgeVector = v2 - v1;
    
    % 找到与凹边相邻的面
    adjacentFaces = findAdjacentFaces(faces, edge);
    
    % 计算两个相邻面的法向量
    face1 = faces{adjacentFaces(1)};
    face2 = faces{adjacentFaces(2)};
    
    % 计算面法线
    v1_1 = vertices(face1(2),:) - vertices(face1(1),:);
    v1_2 = vertices(face1(3),:) - vertices(face1(1),:);
    normal1 = cross(v1_1, v1_2);
    normal1 = normal1 / norm(normal1);
    
    v2_1 = vertices(face2(2),:) - vertices(face2(1),:);
    v2_2 = vertices(face2(3),:) - vertices(face2(1),:);
    normal2 = cross(v2_1, v2_2);
    normal2 = normal2 / norm(normal2);
    
    % 切割平面法线是两个面法线的平均
    cutNormal = normal1 + normal2;
    cutNormal = cutNormal / norm(cutNormal);
    
    % 确保切割平面垂直于凹边
    cutNormal = cross(cutNormal, edgeVector);
    cutNormal = cutNormal / norm(cutNormal);
    
    % 创建平面方程: ax + by + cz + d = 0
    d = -dot(cutNormal, midpoint);
    cutPlane = [cutNormal, d];
    connectedFaces = adjacentFaces;
end

function [vertices1, faces1, vertices2, faces2] = splitPolyhedron(vertices, faces, plane)
    % 简化实现:实际需要更复杂的几何操作
    % 这里只是一个框架,实际实现需要处理:
    % 1. 找到平面与多面体的交线
    % 2. 将多面体分成两部分
    % 3. 为每部分创建新的顶点和面列表
    
    % 由于实现复杂,这里仅返回原始多面体作为示例
    % 实际应用中应考虑使用现有的计算几何库或更完整的实现
    
    vertices1 = vertices;
    faces1 = faces;
    vertices2 = vertices;
    faces2 = faces;
    
    warning('Simplified implementation - actual splitting not performed');
end

使用示例

% 定义一个简单的凹多面体(例如一个凹陷的立方体)
vertices = [
    0 0 0;
    2 0 0;
    2 2 0;
    0 2 0;
    0 0 2;
    2 0 2;
    1 1 1;  % 凹陷顶点
    0 2 2
];

faces = {
    [1 2 3 4],   % 底面
    [1 2 6 5],   % 前面
    [2 3 7 6],   % 右侧面(凹面)
    [3 4 8 7],   % 后面
    [4 1 5 8],   % 左侧面
    [5 6 7 8]    % 顶面
};

% 执行分解
convexParts = decomposeConcavePolyhedron(vertices, faces);

% 可视化结果
figure;
hold on;
axis equal;
grid on;
view(3);

colors = lines(length(convexParts));
for i = 1:length(convexParts)
    verts = convexParts{i};
    % 这里需要根据分解后的顶点重建面,简化示例中省略
    % 实际应用中需要正确处理面信息
    if size(verts, 1) > 0
        plot3(verts(:,1), verts(:,2), verts(:,3), 'o', 'Color', colors(i,:));
        k = convhull(verts(:,1), verts(:,2), verts(:,3));
        trisurf(k, verts(:,1), verts(:,2), verts(:,3), 'FaceColor', colors(i,:), 'FaceAlpha', 0.5);
    end
end
title('凹多面体分解为凸多面体');

注意事项

  1. 上述代码是一个框架实现,实际的分割操作(splitPolyhedron函数)需要更复杂的几何计算。
  2. 对于生产环境,建议考虑使用专业的计算几何库,如CGAL的MATLAB接口。
  3. 分解结果的质量取决于分割平面的选择策略。
  4. 对于面数小于10的多面体,这种递归方法通常是有效的。

更可靠的替代方案

对于实际应用,可以考虑以下替代方案:

  1. 使用MATLAB的boundary函数或convhull函数进行凸包计算
  2. 将数据导出到专业3D建模软件进行分解
  3. 使用CGAL库的凸分解算法并通过MEX接口集成到MATLAB中

这个实现提供了基本框架,但可能需要根据具体应用场景进行调整和完善。


资料

CvxNet: Learnable Convex Decomposition (CVPR 2020 论文)
matlab几何基础

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值