三维凹多面体分解为凸多面体的MATLAB实现
要将一个面数小于10的凹多面体分解为多个凸多面体,我们可以使用凸分解算法。以下是MATLAB实现方案:
方法概述
- 表示凹多面体:使用顶点和面列表表示输入的多面体
- 检测凹性:通过计算面法线和顶点位置关系确定凹边
- 分解策略:使用增量式凸分解或基于凹边的分割方法
- 实现分解:通过添加切割平面将凹多面体分割为凸部分
MATLAB代码实现
function convexParts = decomposeConcavePolyhedron(vertices, faces)
% 检查输入多面体是否是凹的
if isConvex(vertices, faces)
convexParts = {vertices};
return;
end
% 初始化凸部分集合
convexParts = {};
% 获取凹边
concaveEdges = findConcaveEdges(vertices, faces);
% 如果没有找到凹边,说明已经是凸的
if isempty(concaveEdges)
convexParts = {vertices};
return;
end
% 选择第一个凹边进行分割
edge = concaveEdges(1,:);
% 找到分割平面
[cutPlane, connectedFaces] = findCuttingPlane(vertices, faces, edge);
% 使用分割平面将多面体分成两部分
[vertices1, faces1, vertices2, faces2] = splitPolyhedron(vertices, faces, cutPlane);
% 递归分解两个部分
convexParts1 = decomposeConcavePolyhedron(vertices1, faces1);
convexParts2 = decomposeConcavePolyhedron(vertices2, faces2);
% 合并结果
convexParts = [convexParts1, convexParts2];
end
function isConvex = isConvex(vertices, faces)
% 计算每个面的法向量和中心点
normals = zeros(length(faces), 3);
centers = zeros(length(faces), 3);
for i = 1:length(faces)
faceVertices = vertices(faces{i}, :);
v1 = faceVertices(2,:) - faceVertices(1,:);
v2 = faceVertices(3,:) - faceVertices(1,:);
normals(i,:) = cross(v1, v2);
normals(i,:) = normals(i,:) / norm(normals(i,:));
centers(i,:) = mean(faceVertices, 1);
end
% 检查所有顶点是否在所有面的同一侧
isConvex = true;
for i = 1:length(faces)
for j = 1:size(vertices, 1)
if all(j ~= faces{i}) % 不检查当前面的顶点
vec = vertices(j,:) - centers(i,:);
if dot(vec, normals(i,:)) < -1e-6
isConvex = false;
return;
end
end
end
end
end
function concaveEdges = findConcaveEdges(vertices, faces)
% 找到所有边
edges = [];
for i = 1:length(faces)
face = faces{i};
for j = 1:length(face)
v1 = face(j);
v2 = face(mod(j, length(face)) + 1);
edges = [edges; sort([v1, v2])];
end
end
edges = unique(edges, 'rows');
% 检查每条边是否是凹的
concaveEdges = [];
for i = 1:size(edges, 1)
edge = edges(i,:);
adjacentFaces = findAdjacentFaces(faces, edge);
if length(adjacentFaces) == 2
% 计算两个相邻面的法向量
face1 = faces{adjacentFaces(1)};
face2 = faces{adjacentFaces(2)};
v1_1 = vertices(face1(2),:) - vertices(face1(1),:);
v1_2 = vertices(face1(3),:) - vertices(face1(1),:);
normal1 = cross(v1_1, v1_2);
normal1 = normal1 / norm(normal1);
v2_1 = vertices(face2(2),:) - vertices(face2(1),:);
v2_2 = vertices(face2(3),:) - vertices(face2(1),:);
normal2 = cross(v2_1, v2_2);
normal2 = normal2 / norm(normal2);
% 计算二面角
dihedralAngle = atan2(norm(cross(normal1, normal2)), dot(normal1, normal2));
% 如果二面角大于180度(π弧度),则是凹边
if dihedralAngle > pi - 1e-6
concaveEdges = [concaveEdges; edge];
end
end
end
end
function adjacentFaces = findAdjacentFaces(faces, edge)
% 找到共享给定边的面
adjacentFaces = [];
for i = 1:length(faces)
face = faces{i};
for j = 1:length(face)
v1 = face(j);
v2 = face(mod(j, length(face)) + 1);
if (v1 == edge(1) && v2 == edge(2)) || (v1 == edge(2) && v2 == edge(1))
adjacentFaces = [adjacentFaces, i];
break;
end
end
end
end
function [cutPlane, connectedFaces] = findCuttingPlane(vertices, faces, edge)
% 简化方法:使用垂直于凹边并通过中点的平面
% 实际应用中可能需要更复杂的策略
v1 = vertices(edge(1),:);
v2 = vertices(edge(2),:);
midpoint = (v1 + v2) / 2;
edgeVector = v2 - v1;
% 找到与凹边相邻的面
adjacentFaces = findAdjacentFaces(faces, edge);
% 计算两个相邻面的法向量
face1 = faces{adjacentFaces(1)};
face2 = faces{adjacentFaces(2)};
% 计算面法线
v1_1 = vertices(face1(2),:) - vertices(face1(1),:);
v1_2 = vertices(face1(3),:) - vertices(face1(1),:);
normal1 = cross(v1_1, v1_2);
normal1 = normal1 / norm(normal1);
v2_1 = vertices(face2(2),:) - vertices(face2(1),:);
v2_2 = vertices(face2(3),:) - vertices(face2(1),:);
normal2 = cross(v2_1, v2_2);
normal2 = normal2 / norm(normal2);
% 切割平面法线是两个面法线的平均
cutNormal = normal1 + normal2;
cutNormal = cutNormal / norm(cutNormal);
% 确保切割平面垂直于凹边
cutNormal = cross(cutNormal, edgeVector);
cutNormal = cutNormal / norm(cutNormal);
% 创建平面方程: ax + by + cz + d = 0
d = -dot(cutNormal, midpoint);
cutPlane = [cutNormal, d];
connectedFaces = adjacentFaces;
end
function [vertices1, faces1, vertices2, faces2] = splitPolyhedron(vertices, faces, plane)
% 简化实现:实际需要更复杂的几何操作
% 这里只是一个框架,实际实现需要处理:
% 1. 找到平面与多面体的交线
% 2. 将多面体分成两部分
% 3. 为每部分创建新的顶点和面列表
% 由于实现复杂,这里仅返回原始多面体作为示例
% 实际应用中应考虑使用现有的计算几何库或更完整的实现
vertices1 = vertices;
faces1 = faces;
vertices2 = vertices;
faces2 = faces;
warning('Simplified implementation - actual splitting not performed');
end
使用示例
% 定义一个简单的凹多面体(例如一个凹陷的立方体)
vertices = [
0 0 0;
2 0 0;
2 2 0;
0 2 0;
0 0 2;
2 0 2;
1 1 1; % 凹陷顶点
0 2 2
];
faces = {
[1 2 3 4], % 底面
[1 2 6 5], % 前面
[2 3 7 6], % 右侧面(凹面)
[3 4 8 7], % 后面
[4 1 5 8], % 左侧面
[5 6 7 8] % 顶面
};
% 执行分解
convexParts = decomposeConcavePolyhedron(vertices, faces);
% 可视化结果
figure;
hold on;
axis equal;
grid on;
view(3);
colors = lines(length(convexParts));
for i = 1:length(convexParts)
verts = convexParts{i};
% 这里需要根据分解后的顶点重建面,简化示例中省略
% 实际应用中需要正确处理面信息
if size(verts, 1) > 0
plot3(verts(:,1), verts(:,2), verts(:,3), 'o', 'Color', colors(i,:));
k = convhull(verts(:,1), verts(:,2), verts(:,3));
trisurf(k, verts(:,1), verts(:,2), verts(:,3), 'FaceColor', colors(i,:), 'FaceAlpha', 0.5);
end
end
title('凹多面体分解为凸多面体');
注意事项
- 上述代码是一个框架实现,实际的分割操作(
splitPolyhedron
函数)需要更复杂的几何计算。 - 对于生产环境,建议考虑使用专业的计算几何库,如CGAL的MATLAB接口。
- 分解结果的质量取决于分割平面的选择策略。
- 对于面数小于10的多面体,这种递归方法通常是有效的。
更可靠的替代方案
对于实际应用,可以考虑以下替代方案:
- 使用MATLAB的
boundary
函数或convhull
函数进行凸包计算 - 将数据导出到专业3D建模软件进行分解
- 使用CGAL库的凸分解算法并通过MEX接口集成到MATLAB中
这个实现提供了基本框架,但可能需要根据具体应用场景进行调整和完善。
资料
CvxNet: Learnable Convex Decomposition (CVPR 2020 论文)
matlab几何基础