使用Python解析CGNS文件中的zone-zone链接信息

使用Python解析CGNS文件中的zone-zone链接信息

CGNS (CFD General Notation System) 是一种用于计算流体动力学(CFD)数据的标准文件格式。要解析CGNS文件并提取zone之间的链接信息,可以使用Python的CGNS库。

安装必要的库

首先需要安装CGNS Python绑定:

pip install cgns-python

或者使用更完整的CGNS工具包:

pip install cgnsutils

解析CGNS文件的基本方法

方法1:使用cgns-python

import CGNS.MAP as cgns

def parse_cgns_links(filename):
    # 打开CGNS文件
    tree = cgns.load(filename)
    
    # 遍历查找zone连接信息
    links = []
    
    def traverse(node, path=''):
        nonlocal links
        current_path = f"{path}/{node[0]}" if path else node[0]
        
        # 检查是否是ZoneGridConnectivity节点
        if node[0] == 'ZoneGridConnectivity_t':
            for child in node[2]:
                if child[0] == 'GridConnectivity_t':
                    # 提取连接信息
                    conn_name = child[0]
                    donor_zone = child[1]['ZoneName']
                    point_range = child[1]['PointRange']
                    donor_range = child[1]['DonorPointRange']
                    transform = child[1].get('Transform', None)
                    
                    links.append({
                        'name': conn_name,
                        'donor_zone': donor_zone,
                        'point_range': point_range,
                        'donor_range': donor_range,
                        'transform': transform
                    })
        
        # 递归遍历子节点
        for child in node[2]:
            traverse(child, current_path)
    
    traverse(tree)
    return links

# 使用示例
filename = 'example.cgns'
zone_links = parse_cgns_links(filename)
for link in zone_links:
    print(f"连接名称: {link['name']}")
    print(f"目标zone: {link['donor_zone']}")
    print(f"点范围: {link['point_range']}")
    print(f"donor范围: {link['donor_range']}")
    print(f"变换矩阵: {link['transform']}")
    print("---")

方法2:使用pyCGNS

import CGNS.PAT.cgnslib as cgns
import CGNS.PAT.cgnsutils as utils
import CGNS.PAT.cgnskeywords as keywords

def get_zone_links(filename):
    # 打开CGNS文件
    cg = cgns.cgns(filename)
    
    # 获取所有zone
    zones = cg.get_nodes_by_type(keywords.Zone_s)
    
    links = []
    
    for zone in zones:
        zone_name = zone[0]
        
        # 获取该zone的GridConnectivity节点
        conns = cg.get_nodes_by_type(keywords.GridConnectivity_s, zone)
        
        for conn in conns:
            conn_name = conn[0]
            donor_zone = cg.get_value(conn, keywords.GridConnectivityDonor_s)
            point_range = cg.get_value(conn, keywords.PointRange_s)
            donor_range = cg.get_value(conn, keywords.PointRangeDonor_s)
            transform = cg.get_value(conn, keywords.GridConnectivityProperty_s)
            
            links.append({
                'source_zone': zone_name,
                'conn_name': conn_name,
                'donor_zone': donor_zone,
                'point_range': point_range,
                'donor_range': donor_range,
                'transform': transform
            })
    
    cg.close()
    return links

# 使用示例
filename = 'example.cgns'
links = get_zone_links(filename)
for link in links:
    print(f"源zone: {link['source_zone']}")
    print(f"连接名称: {link['conn_name']}")
    print(f"目标zone: {link['donor_zone']}")
    print(f"点范围: {link['point_range']}")
    print(f"donor范围: {link['donor_range']}")
    print(f"变换矩阵: {link['transform']}")
    print("---")

注意事项

  1. CGNS文件可能有不同的版本和结构,上述代码可能需要根据实际情况调整。

  2. zone-zone连接信息通常存储在ZoneGridConnectivity节点下的GridConnectivity子节点中。

  3. 连接信息通常包括:

    • 连接名称
    • 目标zone名称
    • 点范围(PointRange)
    • donor点范围(DonorPointRange)
    • 变换矩阵(Transform)
  4. 对于大型CGNS文件,考虑使用内存映射或分块读取以提高性能。

  5. 如果遇到复杂的CGNS结构,可能需要结合CGNS标准文档进行分析。

希望这些代码示例能帮助你解析CGNS文件中的zone-zone连接信息!

背景描述 2016 年全球生态足迹 您所在国家消耗的资源是否超过一年产生的资源? 数据说明 上下文 生态足迹衡量的是特定人口生产其消耗的自然资源(包括植物性食品和纤维产品、牲畜和鱼产品、木材和其他林产品、城市基础设施的空间)和吸收其废物(尤其是碳排放)所需的生态资产。该足迹跟踪了六类生产性表面积的使用情况:农田、牧场、渔场、建成区(或城市)土地、森林面积和土地上的碳需求。 一个国家的生物承载力代表其生态资产的生产力,包括农田、牧场、林地、渔场和建筑用地。这些区域,尤其是如果不采伐,也可以吸收我们产生的大部分废物,尤其是我们的碳排放。 生态足迹和生物承载力都以全球公顷表示,即具有全球可比性的标准化公顷数与世界平均生产力。 如果一个种群的生态足迹超过该地区的生物承载力,则该区域就会出现生态赤字。它对其陆地和海洋所能提供的商品和服务的需求——水果和蔬菜、肉类、鱼类、木材、服装用棉花和二氧化碳吸收——超过了该地区生态系统可以更新的需求。生态赤字地区通过进口、变现自己的生态资产(如过度捕捞)和/或向大气中排放二氧化碳来满足需求。如果一个地区的生物承载力超过其生态足迹,它就拥有生态保护区。 确认 生态足迹测量是由不列颠哥伦比亚大学的 Mathis Wackernagel 和 William Rees 构思的。生态足迹数据由 Global Footprint Network 提供。 灵感 您的国家是否存在生态赤字,消耗的资源超过了每年的产量?哪些国家的生态赤字或保护区最大?他们的消费量是比普通国家少还是多?2017 年地球超载日,即日历上人类使用一年自然资源的日子,何时发生?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值