《数值分析》相关知识点总结

一、绪论

1. 绝对误差

准确数与近似数之差,即 e = x − x ∗ e=x-x^* e=xx.

绝对误差限即为绝对误差的上界,即 ∣ e ∣ = ∣ x − x ∗ ∣ ≥ ε |e|=|x-x^*|\ge\varepsilon e=xxε.

对于 x x x的近似值 x ∗ = ± 0. a 1 a 2 … a n × 1 0 m x^*=\pm0.a_1a_2\dots a_n\times10^m x=±0.a1a2an×10m,若误差 ∣ x − x ∗ ∣ ≤ 1 2 × 1 0 m − l |x-x^*|\le\frac{1}{2}\times10^{m-l} xx21×10ml,则 x ∗ x^* x l l l位有效数字。

例如, π \pi π的近似值 3.1416 3.1416 3.1416有五位有效数字。

2. 相对误差

e r = x − x ∗ x e_r=\frac{x-x^*}{x} er=xxx x ∗ x^* x的相对误差,相对误差限即为相对误差的上限,即 ∣ e r ∣ = ∣ x − x ∗ ∣ ∣ x ∣ ≤ ε r ∗ |e_r|=\frac{|x-x^*|}{|x|}\le\varepsilon_r^* er=xxxεr.

设近似值 x ∗ = ± 0. a 1 a 2 … a n × 1 0 m x^*=\pm0.a_1a_2\dots a_n\times10^m x=±0.a1a2an×10m n n n位有效数字,则其相对误差限为 1 2 a 1 × 1 0 − n + 1 \frac1{2a_1}\times10^{-n+1} 2a11×10n+1.

3. 数值运算的误差估计

设近似数 x 1 ∗ x_1^* x1 x 2 ∗ x_2^* x2的误差限分别为 ε ( x 1 ∗ ) \varepsilon(x_1^*) ε(x1) ε ( x 2 ∗ ) \varepsilon(x_2^*) ε(x2),则他们的四则运算后的误差限为:

{ ε ( x 1 ∗ ± x 2 ∗ ) ≈ ε ( x 1 ∗ ) + ε ( x 2 ∗ ) ε ( x 1 ∗ ⋅ x 2 ∗ ) ≈ ∣ x 2 ∗ ∣ ε ( x 1 ∗ ) + ∣ x 1 ∗ ∣ ε ( x 2 ∗ ) ε ( x 1 ∗ / x 2 ∗ ) ≈ ∣ x 2 ∗ ∣ ε ( x 1 ∗ ) + ∣ x 1 ∗ ∣ ε ( x 2 ∗ ) ∣ x 2 ∗ ∣ 2 \left\{ \begin{array}{l} \varepsilon(x_1^*\pm x_2^*) \approx \varepsilon(x_1^*)+\varepsilon(x_2^*) \\[7pt] \varepsilon(x_1^*\cdot x_2^*)\approx|x_2^*|\varepsilon(x_1^*)+|x_1^*|\varepsilon(x_2^*)\\[7pt] \varepsilon(x_1^*/x_2^*)\approx \frac{|x_2^*|\varepsilon(x_1^*)+|x_1^*|\varepsilon(x_2^*)}{|x_2^*|^2}\\ \end{array} \right . ε(x1±x2)ε(x1)+ε(x2)ε(x1x2)x2ε(x1)+x1ε(x2)ε(x1/x2)x22x2ε(x1)+x1ε(x2)

对于 A = f ( x 1 , x 2 , ⋅ , x n ) A=f(x_1,x_2,\cdot ,x_n) A=f(x1,x2,,xn),计算 A ∗ = f ( x 1 ∗ , x 2 ∗ , ⋅ , x n ∗ ) A^*=f(x_1^*,x_2^*,\cdot ,x_n^*) A=f(x1,x2,,xn)时的误差限为:
ε ( A ∗ ) = ∑ k = 1 n ∣ (   ∂ f ∂ x k ) ∣ ε ( x k ∗ ) \varepsilon(A^*)=\sum_{k=1}^n\left|\left(\ \frac{\partial f}{\partial x_k} \right)\right|\varepsilon(x_k^*) ε(A)=k=1n( xkf)ε(xk)

4. 数值计算稳定性

若误差在计算过程中越来越大,则算法不稳定,即初始误差在计算中传播导致误差增长很快。否则算法是稳定的。例如,要计算 I n = ∫ 0 1 x n x + 5 d x I_n=\int_0^1\frac{x^n}{x+5}dx In=01x+5xndx
I n = 1 n − 5 I n − 1 I n = 1 5 ( 1 n − I n ) I_n=\frac1n-5I_{n-1}\\[10pt]I_n=\frac15\left( \frac1n-I_n\right) In=n15In1In=51(n1In)
第一个算法是不稳定的,因为误差 e n = − 5 e n − 1 = ( − 5 ) n e 0 e_n=-5e_{n-1}=(-5)^ne_0 en=5en1=(5)ne0,误差随迭代次数而增加;第二个算法是稳定的,因为误差 e n = − 1 5 e n − 1 = ( − 1 5 ) n e 0 e_n=-\frac 15e_{n-1}=(-\frac15)^ne_0 en=51en1=(51)ne0,误差会逐渐减小。

5. 数值计算的原则

  1. 避免除数绝对值远小于被除数绝对值
  2. 避免相近数相减
  3. 避免小数吃大数

二、插值法

1. Lagrange插值

已知 f ( x i ) = y i , i = 0 , 1 , 2 , … , n f(x_i)=y_i,i=0,1,2,\dots,n f(xi)=yii=0,1,2,,n,由Lagrange插值法可得插值多项式:
L n ( x

  • 24
    点赞
  • 252
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值