一、缺失值的统计和删除
1. 缺失信息的统计
缺失数据可以使用 isna
或 isnull
(两个函数没有区别)来查看每个单元格是否缺失,结合 mean
可以计算出每列缺失值的比例:
df = pd.read_csv('data/learn_pandas.csv',
usecols = ['Grade', 'Name', 'Gender', 'Height', 'Weight', 'Transfer'])
df.head()
Grade Name Gender Height Weight Transfer
0 Freshman Gaopeng Yang Female 158.9 46.0 N
1 Freshman Changqiang You Male 166.5 70.0 N
2 Senior Mei Sun Male 188.9 89.0 N
3 Sophomore Xiaojuan Sun Female NaN 41.0 N
4 Sophomore Gaojuan You Male 174.0 74.0 N
df.isna().head()
Grade Name Gender Height Weight Transfer
0 False False False False False False
1 False False False False False False
2 False False False False False False
3 False False False True False False
4 False False False False False False
df.isna().mean() # 查看缺失的比例
Grade 0.000
Name 0.000
Gender 0.000
Height 0.085
Weight 0.055
Transfer 0.060
dtype: float64
如果想要查看某一列缺失或者非缺失的行,可以利用 Series
上的 isna
或者 notna
进行布尔索引。
# 查看身高缺失的行:
df[df.Height.isna()].head()
Grade Name Gender Height Weight Transfer
3 Sophomore Xiaojuan Sun Female NaN 41.0 N
12 Senior Peng You Female NaN 48.0 NaN
26 Junior Yanli You Female NaN 48.0 N
36 Freshman Xiaojuan Qin Male NaN 79.0 Y
60 Freshman Yanpeng Lv Male NaN 65.0 N
如果想要同时对几个列,检索出全部为缺失或者至少有一个缺失或者没有缺失的行,可以使用 isna
, notna
和 any
, all
的组合。
sub_set = df[['Height', 'Weight', 'Transfer']]
sub_set.head()
Height Weight Transfer
0 158.9 46.0 N
1 166.5 70.0 N
2 188.9 89.0 N
3 NaN 41.0 N
4 174.0 74.0 N
df[sub_set.isna().all(1)] # 全部缺失
Grade Name Gender Height Weight Transfer
102 Junior Chengli Zhao Male NaN NaN NaN
df[sub_set.isna().any(1)].head() # 至少有一个缺失
Grade Name Gender Height Weight Transfer
3 Sophomore Xiaojuan Sun Female NaN 41.0 N
9 Junior Juan Xu Female 164.8 NaN N
12 Senior Peng You Female NaN 48.0 NaN
21 Senior Xiaopeng Shen Male 166.0 62.0 NaN
26 Junior Yanli You Female NaN 48.0 N
df[sub_set.notna().all(1)].head() # 没有缺失
Grade Name Gender Height Weight Transfer
0 Freshman Gaopeng Yang Female 158.9 46.0 N
1 Freshman Changqiang You Male 166.5 70.0 N
2 Senior Mei Sun Male 188.9 89.0 N
4 Sophomore Gaojuan You Male 174.0 74.0 N
5 Freshman Xiaoli Qian Female 158.0 51.0 N
缺失信息的删除
数据处理中经常需要根据缺失值的大小、比例或其他特征来进行行样本或列特征的删除, pandas
中提供了 dropna
函数来进行操作。
dropna
的主要参数为轴方向 axis
(默认为0,即删除行)、删除方式 how
、删除的非缺失值个数阈值 thresh
( 非缺失值 没有达到这个数量的相应维度会被删除)、备选的删除子集 subset
,其中 how
主要有 any
和 all
两种参数可以选择。
# 删除身高体重至少有一个缺失的行:
res = df.dropna(how = 'any', subset = ['Height', 'Weight'])
res.shape
>>> (174, 6)
# 使用布尔索引也可以实现:
res = df.loc[df[['Height', 'Weight']].notna().all(1)]
res.shape
>>> (174, 6)
# 删除超过15个缺失值的列:
res = df.dropna(1, thresh=df.shape[0]-15)
# 身高被删除
res.head()
Grade Name Gender Weight Transfer
0 Freshman Gaopeng Yang Female 46.0 N
1 Freshman Changqiang You Male 70.0 N
2 Senior Mei Sun Male 89.0 N
3 Sophomore Xiaojuan Sun Female 41.0 N
4 Sophomore Gaojuan You Male 74.0 N
# 使用布尔索引来完成:
res = df.loc[:, ~(df.isna().sum()>15)]
res.head()
Grade Name Gender Weight Transfer
0 Freshman Gaopeng Yang Female 46.0 N
1 Freshman Changqiang You Male 70.0 N
2 Senior Mei Sun Male 89.0 N
3 Sophomore Xiaojuan Sun Female 41.0 N
4 Sophomore Gaojuan You Male 74.0 N
二、缺失值的填充和插值
1. 利用fillna进行填充
在 fillna 中有三个参数是常用的: value
, method
, limit
。其中, value
为填充值,可以是标量,也可以是索引到元素的字典映射; method
为填充方法,有用前面的元素填充 ffill 和用后面的元素填充 bfill 两种类型, limit
参数表示连续缺失值的最大填充次数。
s = pd.Series([np.nan, 1, np.nan, np.nan, 2, np.nan], list('aaabcd'))
s.fillna(method='ffill') # 用前面的值向后填充
a NaN
a 1.0
a 1.0
b 1.0
c 2.0
d 2.0
dtype: float64
s.fillna(method='bfill') # 用后面的值向后填充
a 1.0
a 1.0
a 2.0
b 2.0
c 2.0
d NaN
dtype: float64
s.fillna(method='ffill', limit=1) # 连续出现的缺失,最多填充一次
a NaN
a 1.0
a 1.0
b NaN
c 2.0
d 2.0
dtype: float64
s.fillna(s.mean()) # value为标量
a 1.5
a 1.0
a 1.5
b 1.5
c 2.0
d 1.5
dtype: float64
s.fillna({'a': 100, 'd': 200}) # 通过索引映射填充的值
a 100.0
a 1.0
a 100.0
b NaN
c 2.0
d 200.0
dtype: float64
有时为了更加合理地填充,需要先进行分组后再操作。
# 根据年级进行身高的均值填充:
df.groupby('Grade')['Height'].transform(lambda x: x.fillna(x.mean())).head()
0 158.900000
1 166.500000
2 188.900000
3 163.075862
4 174.000000
Name: Height, dtype: float64
练一练
对一个序列以如下规则填充缺失值:如果单独出现的缺失值,就用前后均值填充,如果连续出现的缺失值就不填充,即序列[1, NaN, 3, NaN, NaN]填充后为[1, 2, 3, NaN, NaN],请利用
fillna
函数实现。(提示:利用limit
参数)
ss = pd.Series([1, np.nan, 3, np.nan, np.nan])
ss
0 1.0
1 NaN
2 3.0
3 NaN
4 NaN
dtype: float64
ss.fillna(ss.mean(), limit=1)
0 1.0
1 2.0
2 3.0
3 NaN
4 NaN
dtype: float64
2. 插值函数
Series.interpolate(method=‘linear’, axis=0, limit=None, inplace=False, limit_direction=None, limit_area=None, downcast=None, **kwargs)
由于很多插值方法涉及到比较复杂的数学知识,因此这里只讨论比较常用且简单的三类情况,即线性插值
、最近邻插值
和索引插值
。
对于 interpolate
而言,除了插值方法(默认为 linear 线性插值)之外,有与 fillna 类似的两个常用参数,一个是控制方向的 limit_direction
,另一个是控制最大连续缺失值插值个数的 limit
。其中,限制插值的方向默认为 forward ,这与 fillna 的 method 中的 ffill 是类似的,若想要后向限制插值或者双向限制插值可以指定为 backward
或 both
。
s = pd.Series([np.nan, np.nan, 1, np.nan, np.nan, np.nan, 2, np.nan, np.nan])
s.values
>>> array([nan, nan, 1., nan, nan, nan, 2., nan, nan])
2.1 线性插值法
# 在默认线性插值法下进行 backward限制插值,同时限制最大连续条数为1:
s.interpolate(limit_direction='backward', limit=1).values
>>> array([ nan, 1. , 1. , nan, nan, 1.75, 2. , nan, nan])
# 在默认线性插值法下进行双向限制插值,同时限制最大连续条数为1:
s.interpolate(limit_direction='both', limit=1).values
>>> array([ nan, 1. , 1. , 1.25, nan, 1.75, 2. , 2. , nan])
最近邻插值
最近邻插补,即缺失值的元素和离它最近的非缺失值元素一样
s.interpolate('nearest').values
>>> array([nan, nan, 1., 1., 1., 2., 2., nan, nan])
索引插值
索引插值,即根据索引大小进行线性插值。
s = pd.Series([0,np.nan,10],index=[0,1,10])
s
0 0.0
1 NaN
10 10.0
dtype: float64
s.interpolate().values # 默认的线性插值,等价于计算中点的值
>>> array([ 0., 5., 10.])
s.interpolate(method='index').values # 和索引有关的线性插值,计算相应索引大小对应的值
>>> array([ 0., 1., 10.])
这种方法对于时间戳索引也是可以使用的
s = pd.Series([0,np.nan,10],
index=pd.to_datetime(['20200101', '20200102', '20200111']))
s
2020-01-01 0.0
2020-01-02 NaN
2020-01-11 10.0
dtype: float64
s.interpolate()
2020-01-01 0.0
2020-01-02 5.0
2020-01-11 10.0
dtype: float64
s.interpolate(method='index')
2020-01-01 0.0
2020-01-02 1.0
2020-01-11 10.0
dtype: float64
关于polynomial和spline插值的注意事项
在interpolate
中如果选用polynomial
的插值方法,它内部调用的是scipy.interpolate.interp1d(*,*,kind=order)
,这个函数内部调用的是 make_interp_spline 方法,因此其实是样条插值而不是类似于 numpy 中的 polyfit 多项式拟合插值;而当选用 spline 方法时, pandas 调用的是 scipy.interpolate.UnivariateSpline 而不是普通的样条插值。这一部分的文档描述比较混乱,而且这种参数的设计也是不合理的,当使用这两类插值方法时,用户一定要小心谨慎地根据自己的实际需求选取恰当的插值方法。
三、Nullable类型
1. 缺失记号及其缺陷
在 python
中的缺失值用 None
表示,该元素除了等于自己本身之外,与其他任何元素不相等
None == None
>>> True
None == False
>>> False
None == []
>>> False
在 numpy
中利用 np.nan
来表示缺失值,该元素除了不和其他任何元素相等之外,和自身的比较结果也返回 False
np.nan == np.nan
>>> False
np.nan == []
>>> False
np.nan == None
>>> False
值得注意的是,虽然在对缺失序列或表格的元素进行比较操作的时候, np.nan
的对应位置会返回 False
,但是在使用 equals
函数进行两张表或两个序列的相同性检验时,会自动跳过两侧表都是缺失值的位置,直接返回 True
s1 = pd.Series([1, np.nan])
s2 = pd.Series([1, 2])
s3 = pd.Series([1, np.nan])
s1 == 1
0 True
1 False
dtype: bool
s1.equals(s2)
>>> False
s1.equals(s3)
>>> True
在时间序列的对象中, pandas 利用 pd.NaT 来指代缺失值,它的作用和 np.nan 是一致的
pd.to_timedelta(['30s', np.nan]) # Timedelta中的NaT
>>> TimedeltaIndex(['0 days 00:00:30', NaT], dtype='timedelta64[ns]', freq=None)
pd.to_datetime(['20200101', np.nan]) # Datetime中的NaT
>>> DatetimeIndex(['2020-01-01', 'NaT'], dtype='datetime64[ns]', freq=None)
那么为什么要引入 pd.NaT
来表示时间对象中的缺失呢?仍然以 np.nan
的形式存放会有什么问题?在 pandas 中可以看到 object 类型的对象,而 object 是一种混杂对象类型,如果出现了多个类型的元素同时存储在 Series 中,它的类型就会变成 object 。
NaT
问题的根源来自于 np.nan
的本身是一种浮点类型,而如果浮点和时间类型混合存储,如果不设计新的内置缺失类型来处理,就会变成含糊不清的 object 类型,这显然是不希望看到的。
type(np.nan)
>>> float
同时,由于 np.nan
的浮点性质,如果在一个整数的 Series
中出现缺失,那么其类型会转变为 float64
;而如果在一个布尔类型的序列中出现缺失,那么其类型就会转为 object
而不是 bool
pd.Series([1, np.nan]).dtype
>>> dtype('float64')
pd.Series([True, False, np.nan]).dtype
>>> dtype('O')
因此,在进入 1.0.0 版本后,
pandas
尝试设计了一种新的缺失类型pd.NA
以及三种 Nullable 序列类型来应对这些缺陷,它们分别是Int
,boolean
和string
。
2. Nullable类型的性质
从字面意义上看 Nullable 就是可空的,言下之意就是序列类型不受缺失值的影响。
pd.Series([np.nan, 1], dtype = 'Int64') #int报错,需要写成Int
0 <NA>
1 1
dtype: Int64
pd.Series([np.nan, True], dtype = 'boolean')
0 <NA>
1 True
dtype: boolean
pd.Series([np.nan, 'my_str'], dtype = 'string')
0 <NA>
1 my_str
dtype: string
在 Int 的序列中,返回的结果会尽可能地成为 Nullable
的类型:
pd.Series([np.nan, 1], dtype = 'Int64') + 1
0 <NA>
1 2
dtype: Int64
pd.Series([np.nan, 0], dtype = 'Int64') == 0
0 <NA>
1 True
dtype: boolean
pd.Series([np.nan, 0], dtype = 'Int64') * 0.5 # 只能是浮点
0 NaN
1 0.0
dtype: float64
对于 boolean
类型的序列而言,其和 bool
序列的行为主要有两点区别:
第一点是带有缺失的布尔列表无法进行索引器中的选择,而 boolean
会把缺失值看作 False
:
s = pd.Series(['a', 'b'])
s_bool = pd.Series([True, np.nan])
s_bool.dtype
>>> dtype('O')
s_boolean = pd.Series([True, np.nan]).astype('boolean')
s[s_boolean]
0 a
dtype: object
s[s_bool]
>>> ValueError: Cannot mask with non-boolean array containing NA / NaN values
第二点是在进行逻辑运算时, bool
类型在缺失处返回的永远是 False
,而 boolean
会根据逻辑运算是否能确定唯一结果来返回相应的值。那什么叫能否确定唯一结果呢?
s_boolean & True
0 True
1 <NA>
dtype: boolean
s_boolean | True
0 True
1 True
dtype: boolean
s_boolean
0 True
1 <NA>
dtype: boolean
~s_boolean # 取反操作同样是无法唯一地判断缺失结果
0 False
1 <NA>
dtype: boolean
一般在实际数据处理时,可以在数据集读入后,先通过 convert_dtypes
转为 Nullable
类型:
df = pd.read_csv('data/learn_pandas.csv')
df.dtypes
School object
Grade object
Name object
Gender object
Height float64
Weight float64
Transfer object
Test_Number int64
Test_Date object
Time_Record object
dtype: object
df = df.convert_dtypes()
df.dtypes
School string
Grade string
Name string
Gender string
Height float64
Weight Int64
Transfer string
Test_Number Int64
Test_Date string
Time_Record string
dtype: object
3. 缺失数据的计算和分组
当调用函数 sum, prob 使用加法和乘法的时候,缺失数据等价于被分别视作0和1
s = pd.Series([2,3,np.nan,4,5])
s.sum()
>>> 14.0
s.prod()
>>> 120.0
当使用累计函数时,会自动跳过缺失值所处的位置:
s.cumsum()
0 2.0
1 5.0
2 NaN
3 9.0
4 14.0
dtype: float64
当进行单个标量运算的时候,除了 np.nan ** 0
和 1 ** np.nan
这两种情况为确定的值之外,所有运算结果全为缺失( pd.NA 的行为与此一致 ),并且 np.nan 在比较操作时一定返回 False ,而 pd.NA 返回 pd.NA :
np.nan == 0
>>> False
pd.NA == 0
>>> <NA>
np.nan > 0
>>> False
pd.NA > 0
>>> <NA>
np.nan + 1
>>> nan
pd.NA + 1
>>> <NA>
np.nan ** 0
>>> 1.0
pd.NA ** 0
>>> 1
1 ** np.nan
>>> 1.0
1 ** pd.NA
>>> 1
另外需要注意的是, diff
, pct_change
这两个函数虽然功能相似,但是对于缺失的处理不同, diff
凡是参与缺失计算的部分全部设为了缺失值,而pct_change
缺失值位置会被设为 0% 的变化率:
s
0 2.0
1 3.0
2 NaN
3 4.0
4 5.0
dtype: float64
s.diff()
0 NaN
1 1.0
2 NaN
3 NaN
4 1.0
dtype: float64
s.pct_change()
0 NaN
1 0.500000
2 0.000000
3 0.333333
4 0.250000
dtype: float64
对于一些函数而言,缺失可以作为一个类别处理,例如在 groupby, get_dummies 中可以设置相应的参数来进行增加缺失类别:
df_nan = pd.DataFrame({'category':['a','a','b',np.nan,np.nan], 'value':[1,3,5,7,9]})
df_nan.groupby('category', dropna=False)['value'].sum()
category
a 4
b 5
NaN 16
Name: value, dtype: int64
pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)
pd.get_dummies(df_nan.category, dummy_na=True) # 特征提取
a b NaN
0 1 0 0
1 1 0 0
2 0 1 0
3 0 0 1
4 0 0 1
四、练习
Ex1:缺失值与类别的相关性检验
在数据处理中,含有过多缺失值的列往往会被删除,除非缺失情况与标签强相关。下面有一份关于二分类问题的数据集,其中
X_1
,X_2
为特征变量,y
为二分类标签。
df = pd.read_csv('data/missing_chi.csv')
df.isna().mean()
X_1 0.855
X_2 0.894
y 0.000
dtype: float64
df.y.value_counts(normalize=True)
0 0.918
1 0.082
Name: y, dtype: float64
事实上,有时缺失值出现或者不出现本身就是一种特征,并且在一些场合下可能与标签的正负是相关的。关于缺失出现与否和标签的正负性,在统计学中可以利用卡方检验来断言它们是否存在相关性。按照特征缺失的正例、特征缺失的负例、特征不缺失的正例、特征不缺失的负例,可以分为四种情况,设它们分别对应的样例数为 n 11 , n 10 , n 01 , n 00 n_{11}, n_{10}, n_{01}, n_{00} n11,n10,n01,n00。假若它们是不相关的,那么特征缺失中正例的理论值,就应该接近于特征缺失总数 × 总体正例的比例,即:
E 11 = n 11 ≈ ( n 11 + n 10 ) × n 11 + n 01 n 11 + n 10 + n 01 + n 00 = F 11 E_{11} = n_{11} \approx (n_{11}+n_{10})\times\frac{n_{11}+n_{01}}{n_{11}+n_{10}+n_{01}+n_{00}} = F_{11} E11=n11≈(n11+n10)×n11+n10+n01+n00n11+n01=F11
其他的三种情况同理。现将实际值和理论值分别记作 E i j , F i j E_{ij}, F_{ij} Eij,Fij,那么希望下面的统计量越小越好,即代表实际值接近不相关情况的理论值: S = ∑ i ∈ { 0 , 1 } ∑ j ∈ { 0 , 1 } ( E i j − F i j ) 2 F i j S = \sum_{i\in \{0,1\}}\sum_{j\in \{0,1\}} \frac{(E_{ij}-F_{ij})^2}{F_{ij}} S=∑i∈{0,1}∑j∈{0,1}Fij(Eij−Fij)2
可以证明上面的统计量近似服从自由度为 1 1 1的卡方分布,即 S ∼ ⋅ χ 2 ( 1 ) S\overset{\cdot}{\sim} \chi^2(1) S∼⋅χ2(1)。因此,可通过计算 P ( χ 2 ( 1 ) > S ) P(\chi^2(1)>S) P(χ2(1)>S)的概率来进行相关性的判别,一般认为当此概率小于 0.05 0.05 0.05 时缺失情况与标签正负存在相关关系,即不相关条件下的理论值与实际值相差较大。
上面所说的概率即为统计学上关于 2 × 2 2\times2 2×2 列联表检验问题的 p p p 值, 它可以通过
scipy.stats.chi2(S, 1)
得到。请根据上面的材料,分别对 X_1, X_2 列进行检验。
# 将x_1和x_2中非缺失值替换为"NotNaN"
cat_1 = df.X_1.fillna('NaN').mask(df.X_1.notna()).fillna("NotNaN")
cat_2 = df.X_2.fillna('NaN').mask(df.X_2.notna()).fillna("NotNaN")
# 写x_1和y,x_2和y的交叉表
df_1 = pd.crosstab(cat_1, df.y, margins=True)
df_2 = pd.crosstab(cat_2, df.y, margins=True)
df_1
y 0 1 All
X_1
NaN 785 70 855
NotNaN 133 12 145
All 918 82 1000
df_2
y 0 1 All
X_2
NaN 894 0 894
NotNaN 24 82 106
All 918 82 1000
def compute_S(my_df):
S = []
for i in range(2):
for j in range(2):
E = my_df.iat[i, j]
F = my_df.iat[i, 2]*my_df.iat[2, j]/my_df.iat[2,2]
S.append((E-F)**2/F)
return sum(S)
res1 = compute_S(df_1)
res2 = compute_S(df_2)
res1
>>> 0.0012965662713972017
res2
>>> 753.3604636823281
from scipy.stats import chi2
chi2.sf(res1, 1) # X_1检验的p值 # 不能认为相关,剔除
>>> 0.9712760884395901
chi2.sf(res2, 1) # X_2检验的p值 # 认为相关,保留
>>> 7.459641265637543e-166
参考文献
https://datawhalechina.github.io/joyful-pandas/build/html/%E7%9B%AE%E5%BD%95/ch7.html