编程实践(Pandas)Task07

一、缺失值的统计和删除

1. 缺失信息的统计

缺失数据可以使用 isnaisnull (两个函数没有区别)来查看每个单元格是否缺失,结合 mean 可以计算出每列缺失值的比例:

df = pd.read_csv('data/learn_pandas.csv',
                 usecols = ['Grade', 'Name', 'Gender', 'Height', 'Weight', 'Transfer'])
df.head()

	Grade		Name			Gender	Height	Weight	Transfer
0	Freshman	Gaopeng Yang	Female	158.9	46.0	N
1	Freshman	Changqiang You	Male	166.5	70.0	N
2	Senior		Mei Sun			Male	188.9	89.0	N
3	Sophomore	Xiaojuan Sun	Female	NaN		41.0	N
4	Sophomore	Gaojuan You		Male	174.0	74.0	N
df.isna().head()

	Grade	Name	Gender	Height	Weight	Transfer
0	False	False	False	False	False	False
1	False	False	False	False	False	False
2	False	False	False	False	False	False
3	False	False	False	True	False	False
4	False	False	False	False	False	False
df.isna().mean() # 查看缺失的比例

Grade       0.000
Name        0.000
Gender      0.000
Height      0.085
Weight      0.055
Transfer    0.060
dtype: float64

如果想要查看某一列缺失或者非缺失的行,可以利用 Series 上的 isna 或者 notna 进行布尔索引。

# 查看身高缺失的行:
df[df.Height.isna()].head()

	Grade		Name			Gender	Height	Weight	Transfer
3	Sophomore	Xiaojuan Sun	Female	NaN		41.0	N
12	Senior		Peng You		Female	NaN		48.0	NaN
26	Junior		Yanli You		Female	NaN		48.0	N
36	Freshman	Xiaojuan Qin	Male	NaN		79.0	Y
60	Freshman	Yanpeng Lv		Male	NaN		65.0	N

如果想要同时对几个列,检索出全部为缺失或者至少有一个缺失或者没有缺失的行,可以使用 isna, notnaany, all 的组合。

sub_set = df[['Height', 'Weight', 'Transfer']]
sub_set.head()

	Height	Weight	Transfer
0	158.9	46.0	N
1	166.5	70.0	N
2	188.9	89.0	N
3	NaN		41.0	N
4	174.0	74.0	N
df[sub_set.isna().all(1)] # 全部缺失

	Grade	Name			Gender	Height	Weight	Transfer
102	Junior	Chengli Zhao	Male	NaN		NaN		NaN
df[sub_set.isna().any(1)].head() # 至少有一个缺失

	Grade		Name			Gender	Height	Weight	Transfer
3	Sophomore	Xiaojuan Sun	Female	NaN		41.0	N
9	Junior		Juan Xu			Female	164.8	NaN		N
12	Senior		Peng You		Female	NaN		48.0	NaN
21	Senior		Xiaopeng Shen	Male	166.0	62.0	NaN
26	Junior		Yanli You		Female	NaN		48.0	N
df[sub_set.notna().all(1)].head() # 没有缺失

	Grade		Name			Gender	Height	Weight	Transfer
0	Freshman	Gaopeng Yang	Female	158.9	46.0	N
1	Freshman	Changqiang You	Male	166.5	70.0	N
2	Senior		Mei Sun			Male	188.9	89.0	N
4	Sophomore	Gaojuan You		Male	174.0	74.0	N
5	Freshman	Xiaoli Qian		Female	158.0	51.0	N

缺失信息的删除

数据处理中经常需要根据缺失值的大小、比例或其他特征来进行行样本或列特征的删除, pandas 中提供了 dropna 函数来进行操作。

dropna 的主要参数为轴方向 axis (默认为0,即删除行)、删除方式 how 、删除的非缺失值个数阈值 thresh ( 非缺失值 没有达到这个数量的相应维度会被删除)、备选的删除子集 subset ,其中 how 主要有 anyall 两种参数可以选择。

# 删除身高体重至少有一个缺失的行:
res = df.dropna(how = 'any', subset = ['Height', 'Weight'])
res.shape
>>> (174, 6)

# 使用布尔索引也可以实现:
res = df.loc[df[['Height', 'Weight']].notna().all(1)]
res.shape
>>> (174, 6)
# 删除超过15个缺失值的列:
res = df.dropna(1, thresh=df.shape[0]-15)
# 身高被删除
res.head()

	Grade		Name			Gender	Weight	Transfer
0	Freshman	Gaopeng Yang	Female	46.0	N
1	Freshman	Changqiang You	Male	70.0	N
2	Senior		Mei Sun			Male	89.0	N
3	Sophomore	Xiaojuan Sun	Female	41.0	N
4	Sophomore	Gaojuan You		Male	74.0	N
# 使用布尔索引来完成:
res = df.loc[:, ~(df.isna().sum()>15)]
res.head()

	Grade		Name			Gender	Weight	Transfer
0	Freshman	Gaopeng Yang	Female	46.0	N
1	Freshman	Changqiang You	Male	70.0	N
2	Senior		Mei Sun			Male	89.0	N
3	Sophomore	Xiaojuan Sun	Female	41.0	N
4	Sophomore	Gaojuan You		Male	74.0	N

二、缺失值的填充和插值

1. 利用fillna进行填充

在 fillna 中有三个参数是常用的: value, method, limit 。其中, value 为填充值,可以是标量,也可以是索引到元素的字典映射; method 为填充方法,有用前面的元素填充 ffill 和用后面的元素填充 bfill 两种类型, limit 参数表示连续缺失值的最大填充次数。

s = pd.Series([np.nan, 1, np.nan, np.nan, 2, np.nan], list('aaabcd'))
s.fillna(method='ffill') # 用前面的值向后填充

a    NaN
a    1.0
a    1.0
b    1.0
c    2.0
d    2.0
dtype: float64

s.fillna(method='bfill') # 用后面的值向后填充

a    1.0
a    1.0
a    2.0
b    2.0
c    2.0
d    NaN
dtype: float64
s.fillna(method='ffill', limit=1) # 连续出现的缺失,最多填充一次

a    NaN
a    1.0
a    1.0
b    NaN
c    2.0
d    2.0
dtype: float64
s.fillna(s.mean()) # value为标量

a    1.5
a    1.0
a    1.5
b    1.5
c    2.0
d    1.5
dtype: float64
s.fillna({'a': 100, 'd': 200}) # 通过索引映射填充的值

a    100.0
a      1.0
a    100.0
b      NaN
c      2.0
d    200.0
dtype: float64

有时为了更加合理地填充,需要先进行分组后再操作。

# 根据年级进行身高的均值填充:
df.groupby('Grade')['Height'].transform(lambda x: x.fillna(x.mean())).head()

0    158.900000
1    166.500000
2    188.900000
3    163.075862
4    174.000000
Name: Height, dtype: float64
练一练

对一个序列以如下规则填充缺失值:如果单独出现的缺失值,就用前后均值填充,如果连续出现的缺失值就不填充,即序列[1, NaN, 3, NaN, NaN]填充后为[1, 2, 3, NaN, NaN],请利用 fillna 函数实现。(提示:利用 limit 参数)

ss = pd.Series([1, np.nan, 3, np.nan, np.nan])
ss

0    1.0
1    NaN
2    3.0
3    NaN
4    NaN
dtype: float64
ss.fillna(ss.mean(), limit=1)

0    1.0
1    2.0
2    3.0
3    NaN
4    NaN
dtype: float64

2. 插值函数

Series.interpolate(method=‘linear’, axis=0, limit=None, inplace=False, limit_direction=None, limit_area=None, downcast=None, **kwargs)

由于很多插值方法涉及到比较复杂的数学知识,因此这里只讨论比较常用且简单的三类情况,即线性插值最近邻插值索引插值

对于 interpolate 而言,除了插值方法(默认为 linear 线性插值)之外,有与 fillna 类似的两个常用参数,一个是控制方向的 limit_direction ,另一个是控制最大连续缺失值插值个数的 limit 。其中,限制插值的方向默认为 forward ,这与 fillna 的 method 中的 ffill 是类似的,若想要后向限制插值或者双向限制插值可以指定为 backwardboth

s = pd.Series([np.nan, np.nan, 1, np.nan, np.nan, np.nan, 2, np.nan, np.nan])
s.values
>>> array([nan, nan,  1., nan, nan, nan,  2., nan, nan])
2.1 线性插值法
# 在默认线性插值法下进行 backward限制插值,同时限制最大连续条数为1:
s.interpolate(limit_direction='backward', limit=1).values
>>> array([ nan, 1.  , 1.  ,  nan,  nan, 1.75, 2.  ,  nan,  nan])

# 在默认线性插值法下进行双向限制插值,同时限制最大连续条数为1:
s.interpolate(limit_direction='both', limit=1).values
>>> array([ nan, 1.  , 1.  , 1.25,  nan, 1.75, 2.  , 2.  ,  nan])
最近邻插值

最近邻插补,即缺失值的元素和离它最近的非缺失值元素一样

s.interpolate('nearest').values
>>> array([nan, nan,  1.,  1.,  1.,  2.,  2., nan, nan])
索引插值

索引插值,即根据索引大小进行线性插值。

s = pd.Series([0,np.nan,10],index=[0,1,10])
s

0      0.0
1      NaN
10    10.0
dtype: float64
s.interpolate().values # 默认的线性插值,等价于计算中点的值
>>> array([ 0.,  5., 10.])
s.interpolate(method='index').values # 和索引有关的线性插值,计算相应索引大小对应的值
>>> array([ 0.,  1., 10.])

这种方法对于时间戳索引也是可以使用的

s = pd.Series([0,np.nan,10],
              index=pd.to_datetime(['20200101', '20200102', '20200111']))
s

2020-01-01     0.0
2020-01-02     NaN
2020-01-11    10.0
dtype: float64

s.interpolate()

2020-01-01     0.0
2020-01-02     5.0
2020-01-11    10.0
dtype: float64

s.interpolate(method='index')

2020-01-01     0.0
2020-01-02     1.0
2020-01-11    10.0
dtype: float64

关于polynomial和spline插值的注意事项
interpolate 中如果选用 polynomial 的插值方法,它内部调用的是 scipy.interpolate.interp1d(*,*,kind=order) ,这个函数内部调用的是 make_interp_spline 方法,因此其实是样条插值而不是类似于 numpy 中的 polyfit 多项式拟合插值;而当选用 spline 方法时, pandas 调用的是 scipy.interpolate.UnivariateSpline 而不是普通的样条插值。这一部分的文档描述比较混乱,而且这种参数的设计也是不合理的,当使用这两类插值方法时,用户一定要小心谨慎地根据自己的实际需求选取恰当的插值方法。

三、Nullable类型

1. 缺失记号及其缺陷

python 中的缺失值用 None 表示,该元素除了等于自己本身之外,与其他任何元素不相等

None == None
>>> True
None == False
>>> False
None == []
>>> False

numpy 中利用 np.nan 来表示缺失值,该元素除了不和其他任何元素相等之外,和自身的比较结果也返回 False

np.nan == np.nan
>>> False
np.nan == []
>>> False
np.nan == None
>>> False

值得注意的是,虽然在对缺失序列或表格的元素进行比较操作的时候, np.nan 的对应位置会返回 False ,但是在使用 equals 函数进行两张表或两个序列的相同性检验时,会自动跳过两侧表都是缺失值的位置,直接返回 True

s1 = pd.Series([1, np.nan])
s2 = pd.Series([1, 2])
s3 = pd.Series([1, np.nan])

s1 == 1

0     True
1    False
dtype: bool

s1.equals(s2)
>>> False
s1.equals(s3)
>>> True

在时间序列的对象中, pandas 利用 pd.NaT 来指代缺失值,它的作用和 np.nan 是一致的

pd.to_timedelta(['30s', np.nan]) # Timedelta中的NaT
>>> TimedeltaIndex(['0 days 00:00:30', NaT], dtype='timedelta64[ns]', freq=None)

pd.to_datetime(['20200101', np.nan]) # Datetime中的NaT
>>> DatetimeIndex(['2020-01-01', 'NaT'], dtype='datetime64[ns]', freq=None)

那么为什么要引入 pd.NaT 来表示时间对象中的缺失呢?仍然以 np.nan 的形式存放会有什么问题?在 pandas 中可以看到 object 类型的对象,而 object 是一种混杂对象类型,如果出现了多个类型的元素同时存储在 Series 中,它的类型就会变成 object 。

NaT 问题的根源来自于 np.nan 的本身是一种浮点类型,而如果浮点和时间类型混合存储,如果不设计新的内置缺失类型来处理,就会变成含糊不清的 object 类型,这显然是不希望看到的。

type(np.nan)
>>> float

同时,由于 np.nan 的浮点性质,如果在一个整数的 Series 中出现缺失,那么其类型会转变为 float64 ;而如果在一个布尔类型的序列中出现缺失,那么其类型就会转为 object 而不是 bool

pd.Series([1, np.nan]).dtype
>>> dtype('float64')

pd.Series([True, False, np.nan]).dtype
>>> dtype('O')

因此,在进入 1.0.0 版本后, pandas 尝试设计了一种新的缺失类型 pd.NA 以及三种 Nullable 序列类型来应对这些缺陷,它们分别是 Int, booleanstring

2. Nullable类型的性质

从字面意义上看 Nullable 就是可空的,言下之意就是序列类型不受缺失值的影响。

pd.Series([np.nan, 1], dtype = 'Int64') #int报错,需要写成Int

0    <NA>
1       1
dtype: Int64
pd.Series([np.nan, True], dtype = 'boolean')

0    <NA>
1    True
dtype: boolean
pd.Series([np.nan, 'my_str'], dtype = 'string')

0      <NA>
1    my_str
dtype: string

在 Int 的序列中,返回的结果会尽可能地成为 Nullable 的类型:

pd.Series([np.nan, 1], dtype = 'Int64') + 1

0    <NA>
1       2
dtype: Int64
pd.Series([np.nan, 0], dtype = 'Int64') == 0

0    <NA>
1    True
dtype: boolean
pd.Series([np.nan, 0], dtype = 'Int64') * 0.5 # 只能是浮点

0    NaN
1    0.0
dtype: float64

对于 boolean 类型的序列而言,其和 bool 序列的行为主要有两点区别:

第一点是带有缺失的布尔列表无法进行索引器中的选择,而 boolean 会把缺失值看作 False

s = pd.Series(['a', 'b'])
s_bool = pd.Series([True, np.nan])
s_bool.dtype
>>> dtype('O')

s_boolean = pd.Series([True, np.nan]).astype('boolean')
s[s_boolean]

0    a
dtype: object

s[s_bool]
>>> ValueError: Cannot mask with non-boolean array containing NA / NaN values

第二点是在进行逻辑运算时, bool 类型在缺失处返回的永远是 False ,而 boolean 会根据逻辑运算是否能确定唯一结果来返回相应的值。那什么叫能否确定唯一结果呢?

s_boolean & True

0    True
1    <NA>
dtype: boolean
s_boolean | True

0    True
1    True
dtype: boolean
s_boolean

0    True
1    <NA>
dtype: boolean
~s_boolean # 取反操作同样是无法唯一地判断缺失结果

0    False
1     <NA>
dtype: boolean

一般在实际数据处理时,可以在数据集读入后,先通过 convert_dtypes 转为 Nullable 类型:

df = pd.read_csv('data/learn_pandas.csv')
df.dtypes

School          object
Grade           object
Name            object
Gender          object
Height         float64
Weight         float64
Transfer        object
Test_Number      int64
Test_Date       object
Time_Record     object
dtype: object
df = df.convert_dtypes()
df.dtypes

School          string
Grade           string
Name            string
Gender          string
Height         float64
Weight           Int64
Transfer        string
Test_Number      Int64
Test_Date       string
Time_Record     string
dtype: object

3. 缺失数据的计算和分组

当调用函数 sum, prob 使用加法和乘法的时候,缺失数据等价于被分别视作0和1

s = pd.Series([2,3,np.nan,4,5])
s.sum()
>>> 14.0
s.prod()
>>> 120.0

当使用累计函数时,会自动跳过缺失值所处的位置:

s.cumsum()

0     2.0
1     5.0
2     NaN
3     9.0
4    14.0
dtype: float64

当进行单个标量运算的时候,除了 np.nan ** 01 ** np.nan 这两种情况为确定的值之外,所有运算结果全为缺失( pd.NA 的行为与此一致 ),并且 np.nan 在比较操作时一定返回 False ,而 pd.NA 返回 pd.NA :

np.nan == 0
>>> False
pd.NA == 0
>>> <NA>
np.nan > 0
>>> False
pd.NA > 0
>>> <NA>
np.nan + 1
>>> nan
pd.NA + 1
>>> <NA>
np.nan ** 0
>>> 1.0
pd.NA ** 0
>>> 1
1 ** np.nan
>>> 1.0
1 ** pd.NA
>>> 1

另外需要注意的是, diff, pct_change 这两个函数虽然功能相似,但是对于缺失的处理不同, diff凡是参与缺失计算的部分全部设为了缺失值,而pct_change缺失值位置会被设为 0% 的变化率:

s

0    2.0
1    3.0
2    NaN
3    4.0
4    5.0
dtype: float64
s.diff()

0    NaN
1    1.0
2    NaN
3    NaN
4    1.0
dtype: float64
s.pct_change()

0         NaN
1    0.500000
2    0.000000
3    0.333333
4    0.250000
dtype: float64

对于一些函数而言,缺失可以作为一个类别处理,例如在 groupby, get_dummies 中可以设置相应的参数来进行增加缺失类别:

df_nan = pd.DataFrame({'category':['a','a','b',np.nan,np.nan], 'value':[1,3,5,7,9]})
df_nan.groupby('category', dropna=False)['value'].sum()

category
a       4
b       5
NaN    16
Name: value, dtype: int64

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)

pd.get_dummies(df_nan.category, dummy_na=True) # 特征提取

	a	b	NaN
0	1	0	0
1	1	0	0
2	0	1	0
3	0	0	1
4	0	0	1

四、练习

Ex1:缺失值与类别的相关性检验

在数据处理中,含有过多缺失值的列往往会被删除,除非缺失情况与标签强相关。下面有一份关于二分类问题的数据集,其中 X_1, X_2 为特征变量, y 为二分类标签。

df = pd.read_csv('data/missing_chi.csv')
df.isna().mean()

X_1    0.855
X_2    0.894
y      0.000
dtype: float64

df.y.value_counts(normalize=True)

0    0.918
1    0.082
Name: y, dtype: float64

事实上,有时缺失值出现或者不出现本身就是一种特征,并且在一些场合下可能与标签的正负是相关的。关于缺失出现与否和标签的正负性,在统计学中可以利用卡方检验来断言它们是否存在相关性。按照特征缺失的正例、特征缺失的负例、特征不缺失的正例、特征不缺失的负例,可以分为四种情况,设它们分别对应的样例数为 n 11 , n 10 , n 01 , n 00 n_{11}, n_{10}, n_{01}, n_{00} n11,n10,n01,n00。假若它们是不相关的,那么特征缺失中正例的理论值,就应该接近于特征缺失总数 × 总体正例的比例,即:
E 11 = n 11 ≈ ( n 11 + n 10 ) × n 11 + n 01 n 11 + n 10 + n 01 + n 00 = F 11 E_{11} = n_{11} \approx (n_{11}+n_{10})\times\frac{n_{11}+n_{01}}{n_{11}+n_{10}+n_{01}+n_{00}} = F_{11} E11=n11(n11+n10)×n11+n10+n01+n00n11+n01=F11
其他的三种情况同理。现将实际值和理论值分别记作 E i j , F i j E_{ij}, F_{ij} Eij,Fij,那么希望下面的统计量越小越好,即代表实际值接近不相关情况的理论值: S = ∑ i ∈ { 0 , 1 } ∑ j ∈ { 0 , 1 } ( E i j − F i j ) 2 F i j S = \sum_{i\in \{0,1\}}\sum_{j\in \{0,1\}} \frac{(E_{ij}-F_{ij})^2}{F_{ij}} S=i{0,1}j{0,1}Fij(EijFij)2

可以证明上面的统计量近似服从自由度为 1 1 1的卡方分布,即 S ∼ ⋅ χ 2 ( 1 ) S\overset{\cdot}{\sim} \chi^2(1) Sχ2(1)。因此,可通过计算 P ( χ 2 ( 1 ) > S ) P(\chi^2(1)>S) P(χ2(1)>S)的概率来进行相关性的判别,一般认为当此概率小于 0.05 0.05 0.05 时缺失情况与标签正负存在相关关系,即不相关条件下的理论值与实际值相差较大。

上面所说的概率即为统计学上关于 2 × 2 2\times2 2×2 列联表检验问题的 p p p 值, 它可以通过 scipy.stats.chi2(S, 1) 得到。请根据上面的材料,分别对 X_1, X_2 列进行检验。

# 将x_1和x_2中非缺失值替换为"NotNaN"
cat_1 = df.X_1.fillna('NaN').mask(df.X_1.notna()).fillna("NotNaN")
cat_2 = df.X_2.fillna('NaN').mask(df.X_2.notna()).fillna("NotNaN")
# 写x_1和y,x_2和y的交叉表
df_1 = pd.crosstab(cat_1, df.y, margins=True)
df_2 = pd.crosstab(cat_2, df.y, margins=True)

df_1
y		0	1	All
X_1			
NaN		785	70	855
NotNaN	133	12	145
All		918	82	1000

df_2
y		0	1	All
X_2			
NaN		894	0	894
NotNaN	24	82	106
All		918	82	1000
def compute_S(my_df):
    S = []
    for i in range(2):
        for j in range(2):
            E = my_df.iat[i, j]
            F = my_df.iat[i, 2]*my_df.iat[2, j]/my_df.iat[2,2]
            S.append((E-F)**2/F)
    return sum(S)

res1 = compute_S(df_1)
res2 = compute_S(df_2)

res1
>>> 0.0012965662713972017
res2
>>> 753.3604636823281
from scipy.stats import chi2
chi2.sf(res1, 1) # X_1检验的p值 # 不能认为相关,剔除
>>> 0.9712760884395901
chi2.sf(res2, 1) # X_2检验的p值 # 认为相关,保留
>>> 7.459641265637543e-166

参考文献

https://datawhalechina.github.io/joyful-pandas/build/html/%E7%9B%AE%E5%BD%95/ch7.html

Python与人工智能实践有密切的关系。Python作为一种简洁、易学、功能强大的编程语言,被广泛应用于人工智能领域。Python提供了丰富的库和工具,使得开发人员可以更轻松地构建和训练机器学习模型、深度学习模型以及其他人工智能应用。 在Python中,有一些常用的库和框架被广泛用于人工智能实践。例如,NumPy库提供了高效的数值计算功能,是许多机器学习和深度学习库的基础。Pandas库提供了数据处理和分析的工具,使得数据的准备和清洗变得更加简单。Scikit-learn库是一个流行的机器学习库,提供了各种常用的机器学习算法和工具。TensorFlow和PyTorch是两个常用的深度学习框架,它们提供了丰富的神经网络模型和训练工具。 在人工智能实践中,Python编程基础是必不可少的。掌握Python的基本语法、变量和数据类型、条件语句、循环语句以及函数等知识是进行人工智能编程的基础。通过学习《Python编程从入门到实践》等相关教材,可以系统地学习Python编程的基础知识。 总结起来,Python是人工智能实践中常用的编程语言,通过掌握Python的基础知识和相关库和框架,可以进行机器学习、深度学习和其他人工智能应用的开发和实践。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *2* *3* [基于Python的人工智能应用实践(蛇书知识点汇总版)](https://blog.csdn.net/weixin_45574710/article/details/125010862)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值