大家好,我是微学AI,最近天气真的是多变啊,忽冷忽热,今天再次给大家带来天气的话题,机器学习实战5-天气预测系列,我们将探讨一个城市的气象数据集,并利用机器学习来预测该城市的天气状况。该数据集包含年平均温度和湿度等信息。
一、准备工作
首先,我们需要了解一下数据集中包含哪些信息。原始数据集可能包含多个变量,但我们主要关注年平均温度和湿度这两个因素对天气状况的影响。年平均温度和湿度可以很好地反映该城市的气候状况,因此它们是预测天气状况的重要变量。我们会对数据集中的各种字段进行分析。
在数据预处理和分析完成之后,我们可以使用各种机器学习算法进行预测。这些算法可以分为有监督学习和无监督学习。有监督学习算法需要使用标记数据集进行训练,以生成预测模型。常用的有监督学习算法包括线性回归、决策树、随机森林、向量机分类模型(SVC算法)等。无监督学习算法则不需要标记数据集,而是通过发现数据集中的潜在规律进行预测。常用的无监督学习算法包括聚类、降维等。本文采用向量机分类模型进行分类预测。
二、代码实践
1.数据导入
import pandas as pd
import matplotlib.