HotEdge 18 论文整理

先整理了一篇,后续再整理

1. An Edge Datastore Architecture For Latency-Critical Distributed Machine Vision Applications

这篇文章的动因是端节点不具有永久存储的能力,需要将数据上传到边缘服务器,边缘服务器汇总多个端节点的数据并上传至云端进行备份存储。进而分析Edge data store latency的组成部分:端节点与边缘服务器之间的数据传输时延(理由是通常他们之间是WI-FI连接,由于WI-FI频谱是无注册的,所以较易受到其他用户的干扰),端节点缓冲队列等待上传的时间。
为了尽快上传端节点的数据到边缘服务器进行存储,作者提出以下设计:

  1. 在检测到信道冲突时,控制减少key-frame的上传频率,保证feature vector能够尽快上传(理由:key-frame的size比feature vector的size要大很多,且feature vector主要是用来行为分析等而key-frame主要是用来取证的,故而key-frame的存储是latency-sensitive,feature vector的存储是latency-critical)
  2. 上述做法会引来新的问题,因为key-frame的缓冲队列会迅速饱和,导致端节点上bufferbloat的问题,所以控制减少key-frame的数量,具体做法是当buffer超过了阈值时,把最相似的k个frame从buffer中删除,减少buffer长度,实现精度与时延之间的权衡。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值