INFOCOMM 21论文笔记

要不还是努力记录点啥好了 /(ㄒoㄒ)/~~

  1. AutoML for Video Analytics with Edge Computing

摘要:视频分析构成了许多无线服务的核心组件,这些服务需要处理从手持设备发出的大量数据流。多址边缘计算(Multi-Access Edge Computing,MEC)是一种很有前途的解决方案,可用于支持这种资源匮乏的服务,但存在大量的配置参数,这些参数以未知且可能是时变的方式影响它们的性能。为了克服这一障碍,我们提出了一个自动机器学习(AutoML)框架,用于联合配置服务和无线网络参数,在最小帧速率约束下最大限度地提高分析的准确性。我们在一个定制原型上的实验揭示了服务的易失性和依赖于系统/数据的性能,并推动了贝叶斯在线学习算法的发展,该算法可以动态优化服务性能。我们证明了我们的解决方案是保证找到一个接近最优配置使用安全探索,即,从来没有违反设定的帧速率阈值。我们使用我们的测试平台来进一步评估这个AutoML框架。

目标是在满足用户定义的最小帧速率约束的同时,通过确定图像编码速率、服务时间分配和NN输入层大小,最大限度地提高识别精度。具体方法:Constrained GP-based MAB optimization (GP-UCB,多臂老虎机,强化学习)

特色:前序motivation测试分析不同NN输入层大小、编码速率对精度、帧速率和延迟等的影响(使用不同的系统设备和数据集进行了广泛的实验,揭示了视频分析的不稳定性能及其对所述系统和数据的依赖性。)

  1. Learning-Driven Decentralized Machine Learning in Resource-Constrained Wireless Edge Computing

摘要:在网络边缘生成的数据可以利用边缘计算的范例进行本地处理。为了充分利用广泛分布的数据,我们致力于一个无线边缘计算系统,该系统使用分散的对等(P2P)方法进行模型训练。然而,在有效的P2P模型训练的道路上有两个主要的挑战:有限的资源(例如,移动边缘设备的网络带宽和电池寿命)和由于设备移动性或无线信道动态而引起的时变网络连接,这两个问题近年来受到较少的关注。为了解决这两个问题,本文自适应地构造了一个动态高效的P2P拓扑结构,模型聚合发生在边缘设备上。简单地说,我们首先将P2P学习(TCPL)问题的拓扑结构描述为一个整数规划问题。然后提出了一种学习驱动的方法,在每个训练时刻自适应地构造拓扑结构。进一步对训练机器学习模型在非凸损失函数下的收敛性进行了分析。大量的仿真结果表明,在相同的精度要求下,该方法在资源受限的情况下,模型训练效率提高了11%左右,通信开销降低了30%左右。

PS:可参考用于形式化表达训练能耗开销和传输能耗开销

具体方法:强化学习,分析定义了状态、行为、奖励等,\epsilon-greedy 方法。算法上好像相对简单,或许可以参考。

  1. . TiBroco: A Fast and Secure Distributed Learning Framework for Tiered Wireless Edge Networks

摘要:最近移动设备和边缘服务器(例如,小型基站)的激增有力地推动了无线边缘的分布式学习。在本文中,我们提出了一个快速而安全的分布式学习框架,它利用了边缘服务器上的计算资源以及分层无线边缘网络中的分布式计算设备。在计算负载上导出了一个基本下界**,该下界在两层(device和ES)上都能完全容忍拜占庭式攻击**。TiBroco是一个分层编码框架,实现了理论上最小的计算量,通过对抗拜占庭现象保证了分布式学习的安全性。通过精确地将负载分配给计算设备和边缘服务器,以及利用无线设备的广播特性,可以实现快速分布式学习。在amazonec2上的大量实验结果表明,我们的TiBroco允许比现有方法更快的分布式学习,同时保证对两层的拜占庭式攻击具有完全的容忍度。

在这里插入图片描述

  1. Low Sample and Communication Complexities in Decentralized Learning: A Triple Hybrid Approach

摘要:近年来,基于网络一致性的分散学习优化算法由于其快速增长的应用受到了广泛的关注。然而,现有的分散学习算法大多不能同时实现低样本和低通信复杂度,这是衡量分散学习的计算和通信代价的两个重要指标。为了克服这些局限性,本文提出了一种三重混合分散随机梯度下降(TH-DSGD)算法,有效地解决了分散学习中的非凸网络一致性优化问题。我们证明了TH-DSGD的总样本复杂度为O(\epsilon−3 )通信复杂度为O(\epsilon−3) 这两种方法都不依赖于数据集的大小,显著提高了现有工作的样本和通信复杂性。我们用各种学习模型进行了大量的实验来验证我们的理论发现。我们还证明了我们的TH-DSGD算法在网络拓扑变得稀疏时是稳定的,并且在大系统范围内具有更好的收敛性。

解决的问题:采样率低了,随机梯度变化就更为不稳定,就要更多通信开销,但采样率高了计算开销就增加了。

  1. Resource-Efficient Federated Learning with Hierarchical Aggregation in Edge Computing

摘要:联邦学习(FL)已经出现在边缘计算中,以解决传统的基于云的集中培训的有限带宽和隐私问题。然而,现有的FL机制可能导致长时间的训练,消耗大量的通信资源。本文提出了一种高效的FL机制,将一个簇中的边缘节点分为多个簇,通过均衡聚类将边缘节点分为**K个簇。通过同步方法进行聚合的头,称为集群聚合,而所有集群头都执行全局聚合的异步方法。**这种处理过程称为层次聚合。我们的分析表明,收敛界取决于簇的数目和训练时间。我们正式定义了资源有效的分层聚合联邦学习(RFL-HA)问题。我们提出了一个有效的算法来确定资源约束,并将其扩展到处理具有网络条件的动态最优簇结构(即K的最优值)。对不同模型和数据集的大量仿真结果表明,与已知的FL机制相比,本文提出的算法在达到相同精度的同时,完成时间减少了34.8%-70%,通信资源减少了33.8%-56.5%。

参考:形式化问题还算易理解,如何选取簇,分为Fixed 和 Dynamic两种情况讨论,但其实本质都差不多,没有太大区别。只是从资源角度讨论,与之前看到的区别在于 之前的是像提高推理精度,个性化之类的。
在这里插入图片描述

  1. EdgeDuet: Tiling Small Object Detection for Edge Assisted Autonomous Mobile Vision

摘要:在资源受限的设备上进行准确、实时的目标检测可以实现自主移动视觉应用,如交通监控、态势感知和安全检查,在拥挤的场景中检测大小目标至关重要。先前的研究要么在本地执行目标检测,要么将任务转移到边缘/云上。局部目标检测在小目标上产生低精度,因为它在低分辨率视频上运行以适应移动内存。由于将高分辨率视频上载到边缘/云,卸载的对象检测会导致高延迟。与单纯的局部处理或卸载不同,我们建议在局部检测大对象的同时,将小对象检测卸载到边缘。关键的挑战是减少小目标检测的延迟。因此,我们开发了EdgeDuet,这是第一个边缘设备协作框架,用于增强平铺级并行的小目标检测。它优化了分块而不是整个帧的卸载检测管道,以获得高精度和低延迟。在LTE、wifi2.4GHz、wifi5ghz条件下对无人机视觉数据集的评估表明,EdgeDuet在小目标检测精度上优于局部目标检测233.0%。与现有的卸载方案相比,它还将检测精度提高了44.7%,延迟提高了34.2%。

本地检测大概,然后模糊化,小对象不模糊将其送到边缘服务器,然后再设计个并行处理(tile、编码、解码),边缘服务器检测,检测完发回给终端的缓存管理。
在这里插入图片描述

  1. Edge-assisted Online On-device Object Detection for Real-time Video Analytics

视频分析中的实时设备对象检测由于移动设备资源有限,无法满足精度要求,而将目标检测推理卸载到边缘是一种耗时的方法,这是由于边缘网络上视频数据的传输。在考虑动态边缘网络和检测时延约束的情况下,基于同时具有在线目标跟踪和边缘辅助分析功能的系统,建立了一个随时间变化的非线性时间耦合程序,通过确定边缘辅助推理的频率来最大化目标检测的整体精度。然后,我们设计了一种基于学习的在线算法,根据目标跟踪结果动态调整触发边缘辅助推理的阈值,该算法通过只获取先前可观察到的输入来控制视频中两个连续帧之间的设备跟踪偏差。我们严格地证明了我们的方法对于最优目标只产生次线性动态遗憾。最后,我们实现了我们提出的在线模式,大量的测试结果与现实世界的跟踪证实了经验上的优越性,在保证检测延迟的情况下,检测精度提高了36%。

  1. EdgeSharing: Edge Assisted Real-time Localization and Object Sharing in Urban Streets

摘要:智能交叉口的协同目标定位和共享有助于提高交通参与者对因视觉障碍而存在危险的关键区域的态势感知。通过在配备摄像头的不同设备之间共享移动对象的位置,它有效地将交通参与者的视野扩展到他们的视野之外。然而,由于定位客户端位置及其检测到的对象的位置的高精度要求,在移动客户端之间准确地共享对象是非常具有挑战性的。因此,我们引入EdgeSharing,一个利用边缘云平台资源的本地化和对象共享系统。EdgeShareing拥有其覆盖区域的实时3D特征图,为通过该区域的客户端设备提供精确定位和对象共享服务。我们进一步提出了几种优化技术来提高定位精度,减少带宽消耗,降低系统的卸载延迟。结果表明,该系统能够实现平均0.28-1.27米的车辆定位误差,目标共享精度为82.3%-91.4%,在城市街道和交叉口的目标识别率提高54.7%。此外,所提出的优化技术减少了70.12%的带宽消耗和40.09%的端到端延迟。

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值