python+opencv拉流(串流)

解释看注释,直接上代码!

import cv2

# 流链接
url = "rtmp://192.168.1.107/aasa/azsx.flv"

cap = cv2.VideoCapture(url)

while(cap.isOpened()):
    ret, frame = cap.read()
    if ret:
        # 显示帧
        cv2.imshow('frame',frame)
        # 按 'q' 键退出循环
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
cap.release()
cv2.destroyAllWindows()
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PythonOpenCV是一种非常流行的计算机视觉库,用于处理图像和视频数据。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,提供了许多功能,包括图像处理、特征检测、目标跟踪、运动检测等。Python是用于编写计算机程序的高级编程语言,它易于学习,并且拥有丰富的第三方库,包括OpenCVPythonOpenCV的主要应用场景包括: 1. 图像处理:使用OpenCV可以进行各种图像处理操作,例如调整大小、裁剪、旋转、色彩空间转换、滤波等。 2. 特征检测:OpenCV提供了许多特征检测算法,如SIFT、SURF、ORB等,可用于识别图像中的关键点并提取特征描述符。 3. 目标跟踪:OpenCV提供了许多目标跟踪算法,如帧间差分法、光流法等,可用于实时跟踪视频中的运动目标。 4. 运动检测:OpenCV可以检测视频中的运动对象,例如车辆、行人等。 5. 面部识别:OpenCV可以用于面部识别,通过检测图像中的面部特征并进行匹配。 使用PythonOpenCV进行计算机视觉开发的基本步骤包括: 1. 安装PythonOpenCV库:可以从官方网站下载并安装PythonOpenCV库。 2. 导入库:在Python脚本中导入OpenCV库,以便可以使用其提供的函数和方法。 3. 读取图像或视频文件:使用OpenCV的函数读取图像或视频文件,并将其加载到内存中。 4. 进行图像处理或特征检测:使用OpenCV提供的函数和方法对图像或视频进行处理或检测特征。 5. 保存结果:将处理或检测的结果保存到文件或输出到控制台。 总之,PythonOpenCV是一种强大的计算机视觉工具,可用于各种图像和视频处理任务。通过学习和掌握PythonOpenCV,您可以轻松地进行计算机视觉研究、开发和应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值