pytorch模型加载测试_pytorch模型加载方法汇总

本文介绍了PyTorch中torchvision.models包的使用,包括预定义的网络结构和预训练模型。重点讲述了如何加载预训练模型,修改模型层,加载部分预训练模型,以及保存和恢复模型的方法。提供了加载预训练模型、只保存和恢复模型参数的代码示例。
摘要由CSDN通过智能技术生成

Pytorch有很多方便易用的包,今天要谈的是torchvision包,它包括3个子包,分别是: torchvison.datasets ,torchvision.models ,torchvision.transforms ,分别是预定义好的数据集(比如MNIST、CIFAR10等)、预定义好的经典网络结构(比如AlexNet、VGG、ResNet等)和预定义好的数据增强方法(比如Resize、ToTensor等)。这些方法可以直接调用,简化我们建模的过程,也可以作为我们学习或构建新的模型的参考。

本文,我们讲述的是models,且只谈模型的加载。models这个包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用的网络结构,并且提供了预训练模型,可以通过简单调用来读取网络结构和预训练模型。

模型地址:https://github.com/pytorch/vision/tree/master/torchvision/models

官方文档:https://pytorch.org/docs/master/torchvision/models.html

我将加载的方法简单总结为以下四种:

1.直接加载预训练模型

1 importtorchvision.models as models2

3 resnet50 = models.resnet50(pretrained=True)

这样就导入了resnet50的预训练模型了。

如果只需要网络结构,不需要用预训练模型的参数来初始化,那么就是:

model =torchvision.models.resnet50(pretrained

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值