ResNet18识别CelebA数据集(Pytorch实战)

1.导库

import os
import time

import numpy as np
import pandas as pd

import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import Dataset
from torch.utils.data import DataLoader

from torchvision import datasets
from torchvision import transforms

import matplotlib.pyplot as plt
from PIL import Image

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2.获取数据集

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
df1 = pd.read_csv('../input/celeba-dataset/list_attr_celeba.csv',usecols=['Male','image_id'] )
#原先数据中-1表示女性。为了方便,我们将-1改为0,即女性用数字0表示
df1.loc[df1['Male']==-1,'Male']=0
# df1.index = df1['image_id']
# del df1['image_id']
df1.head()

在这里插入图片描述

t = df1['Male'].values
print(t)
[0 0 1 ... 1 0 0]
#分3类,用于train,test,valid
df2 = pd.read_csv('../input/celeba-dataset/list_eval_partition.csv')

df2.head(-5)

在这里插入图片描述

df = pd.merge(df1,df2,on='image_id')

df.head()

在这里插入图片描述

df = df.set_index('image_id')
df.head()

在这里插入图片描述

df.to_csv('celeba-gender-partitions.csv')
tmp = pd.read_csv('./celeba-gender-partitions.csv', index_col=0)
tmp.head()

在这里插入图片描述

df.loc[df['partition'] == 0].to_csv('celeba-gender-train.csv')
df.loc[df['partition'] == 1].to_csv('celeba-gender-valid.csv')
df.loc[df['partition'] == 2].to_csv('celeba-gender-test.csv')
t1 = pd.read_csv('celeba-gender-train.csv')
t1.head()

在这里插入图片描述

自定义数据集

class CelebaDataset(Dataset):
    """Custom Dataset for loading CelebA face images"""

    def __init__(self, csv_path, img_dir, transform=None):
    
        df = pd.read_csv(csv_path, index_col=0)#index_col=0 :表示将第一列设置为index值
        self.img_dir = img_dir#图片所在的文件夹
        self.csv_path = csv_path#性别对应图片的关系
        self.img_names = df.index.values #such as:list_img[] = [XXXX.jpg]
        self.y = df['Male'].values      # such as:list[]=[0 or 1]
        self.transform = transform
    def __getitem__(self, index):
        img = Image.open(os.path.join(self.img_dir,self.img_names[index]))
        if self.transform is not None:
            img = self.transform(img)
        
        label = self.y[index]
        return img, label

    def __len__(self):
        return self.y.shape[0]

简单查看

tmp = CelebaDataset(csv_path = './celeba-gender-train.csv',img_dir = '../input/celeba-dataset/img_align_celeba/img_align_celeba')
x,y = tmp.__getitem__(0)
# plt.imshow(x)
print(x.size)
print(y)
(178, 218)
0

创建数据集

BATCH_SIZE = 64
custom_transform = transforms.Compose([transforms.CenterCrop((178, 178)),
                                       transforms.Resize((128, 128)),
                                       #transforms.Grayscale(),                                       
                                       #transforms.Lambda(lambda x: x/255.),
                                       transforms.ToTensor()])

train_dataset = CelebaDataset(csv_path='./celeba-gender-train.csv',
                              img_dir='../input/celeba-dataset/img_align_celeba/img_align_celeba',
                              transform=custom_transform)

valid_dataset = CelebaDataset(csv_path='./celeba-gender-valid.csv',
                              img_dir='../input/celeba-dataset/img_align_celeba/img_align_celeba',
                              transform=custom_transform)

test_dataset = CelebaDataset(csv_path='./celeba-gender-test.csv',
                             img_dir='../input/celeba-dataset/img_align_celeba/img_align_celeba',
                             transform=custom_transform)


train_loader = DataLoader(dataset=train_dataset,
                          batch_size=BATCH_SIZE,
                          shuffle=True,
                          num_workers=4)

valid_loader = DataLoader(dataset=valid_dataset,
                          batch_size=BATCH_SIZE,
                          shuffle=False,
                          num_workers=4)

test_loader = DataLoader(dataset=test_dataset,
                         batch_size=BATCH_SIZE,
                         shuffle=False,
                         num_workers=4)

3.创建Resnet18模型

def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out




class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes, grayscale):
        self.inplanes = 64
        if grayscale:
            in_dim = 1
        else:
            in_dim = 3
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d(7)
        self.fc = nn.Linear(25088 * block.expansion, num_classes)


    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:#看上面的信息是否需要卷积修改,从而满足相加条件
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
#         print(x.size())
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        # because MNIST is already 1x1 here:
        # disable avg pooling
        x = self.avgpool(x)
#         print(x.size())
        x = x.view(x.size(0), -1)
#         print(x.size())
        logits = self.fc(x)
#         print(x.size())
        probas = F.softmax(logits, dim=1)
        return logits, probas



def resnet18(num_classes):
    """Constructs a ResNet-18 model."""
    model = ResNet(block=BasicBlock, 
                   layers=[2, 2, 2, 2],
                   num_classes=num_classes,
                   grayscale=False)
    return model

简单查看一下网络结构

net = resnet18(num_classes = 2)
print(net)
print(net(torch.randn([1,3,256,256])))
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=7)
  (fc): Linear(in_features=25088, out_features=2, bias=True)
)
(tensor([[ 0.5787, -0.0013]], grad_fn=<AddmmBackward>), tensor([[0.6411, 0.3589]], grad_fn=<SoftmaxBackward>))

4.开启训练

NUM_EPOCHS = 3

model = resnet18(num_classes=10)

model = model.to(DEVICE)

#原先这里选用SGD训练,但是效果很差,换成Adam优化就好了
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)


valid_loader = test_loader


def compute_accuracy_and_loss(model, data_loader, device):
    correct_pred, num_examples = 0, 0
    cross_entropy = 0.
    for i, (features, targets) in enumerate(data_loader):
            
        features = features.to(device)
        targets = targets.to(device)

        logits, probas = model(features)
        cross_entropy += F.cross_entropy(logits, targets).item()
        _, predicted_labels = torch.max(probas, 1)
        num_examples += targets.size(0)
        correct_pred += (predicted_labels == targets).sum()
    return correct_pred.float()/num_examples * 100, cross_entropy/num_examples
    

start_time = time.time()
train_acc_lst, valid_acc_lst = [], []
train_loss_lst, valid_loss_lst = [], []

for epoch in range(NUM_EPOCHS):
    
    model.train()
    
    for batch_idx, (features, targets) in enumerate(train_loader):
    
        ### PREPARE MINIBATCH
        features = features.to(DEVICE)
        targets = targets.to(DEVICE)
            
        ### FORWARD AND BACK PROP
        logits, probas = model(features)
        cost = F.cross_entropy(logits, targets)
        optimizer.zero_grad()
        
        cost.backward()
        
        ### UPDATE MODEL PARAMETERS
        optimizer.step()
        
        ### LOGGING
        if not batch_idx % 500:
            print (f'Epoch: {epoch+1:03d}/{NUM_EPOCHS:03d} | '
                   f'Batch {batch_idx:04d}/{len(train_loader):04d} |' 
                   f' Cost: {cost:.4f}')

    # no need to build the computation graph for backprop when computing accuracy
    model.eval()
    with torch.set_grad_enabled(False):
        train_acc, train_loss = compute_accuracy_and_loss(model, train_loader, device=DEVICE)
        valid_acc, valid_loss = compute_accuracy_and_loss(model, valid_loader, device=DEVICE)
        train_acc_lst.append(train_acc)
        valid_acc_lst.append(valid_acc)
        train_loss_lst.append(train_loss)
        valid_loss_lst.append(valid_loss)
        print(f'Epoch: {epoch+1:03d}/{NUM_EPOCHS:03d} Train Acc.: {train_acc:.2f}%'
              f' | Validation Acc.: {valid_acc:.2f}%')
        
    elapsed = (time.time() - start_time)/60
    print(f'Time elapsed: {elapsed:.2f} min')
  
elapsed = (time.time() - start_time)/60
print(f'Total Training Time: {elapsed:.2f} min')

训练结果

Epoch: 001/003 | Batch 0000/2544 | Cost: 0.8401
Epoch: 001/003 | Batch 0500/2544 | Cost: 0.1133
Epoch: 001/003 | Batch 1000/2544 | Cost: 0.1819
Epoch: 001/003 | Batch 1500/2544 | Cost: 0.1938
Epoch: 001/003 | Batch 2000/2544 | Cost: 0.0334
Epoch: 001/003 | Batch 2500/2544 | Cost: 0.0738
Epoch: 001/003 Train Acc.: 96.16% | Validation Acc.: 95.70%
Time elapsed: 11.19 min
Epoch: 002/003 | Batch 0000/2544 | Cost: 0.0383
Epoch: 002/003 | Batch 0500/2544 | Cost: 0.0661
Epoch: 002/003 | Batch 1000/2544 | Cost: 0.1381
Epoch: 002/003 | Batch 1500/2544 | Cost: 0.1923
Epoch: 002/003 | Batch 2000/2544 | Cost: 0.0851
Epoch: 002/003 | Batch 2500/2544 | Cost: 0.1290
Epoch: 002/003 Train Acc.: 97.19% | Validation Acc.: 96.65%
Time elapsed: 19.65 min
Epoch: 003/003 | Batch 0000/2544 | Cost: 0.0455
Epoch: 003/003 | Batch 0500/2544 | Cost: 0.0671
Epoch: 003/003 | Batch 1000/2544 | Cost: 0.0431
Epoch: 003/003 | Batch 1500/2544 | Cost: 0.0403
Epoch: 003/003 | Batch 2000/2544 | Cost: 0.1455
Epoch: 003/003 | Batch 2500/2544 | Cost: 0.1445
Epoch: 003/003 Train Acc.: 97.77% | Validation Acc.: 97.24%
Time elapsed: 28.05 min
Total Training Time: 28.05 min

训练损失和测试损失关系图

在这里插入图片描述

训练精度和测试精度关系图

在这里插入图片描述

5.测试阶段

model.eval()
with torch.set_grad_enabled(False): # save memory during inference
    test_acc, test_loss = compute_accuracy_and_loss(model, test_loader, DEVICE)
    print(f'Test accuracy: {test_acc:.2f}%')
Test accuracy: 97.24%

6.查看效果图

from PIL import Image
import matplotlib.pyplot as plt
for features, targets in train_loader:
    break
#预测环节
_, predictions = model.forward(features[:8].to(DEVICE))
predictions = torch.argmax(predictions, dim=1)
print(predictions)

features = features[:7]
fig = plt.figure()

# print(features[i].size())
for i in range(6):
    plt.subplot(2,3,i+1)
    plt.tight_layout()
    tmp = features[i]
    plt.imshow(np.transpose(tmp, (1, 2, 0)))
    plt.title("Actual value: {}".format(targets[i])+'\n'+"Prediction value: {}".format(predictions[i]),size = 10)
    
#     plt.title("Prediction value: {}".format(tname[targets[i]]))
plt.show()

在这里插入图片描述

  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
下面是使用PyTorchResNet-18模型训练自己的数据集的源代码示例: ```python import torch import torchvision import torchvision.transforms as transforms import torchvision.models as models import torch.optim as optim import torch.nn as nn # 定义数据预处理 transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # 加载自定义数据集 train_dataset = torchvision.datasets.ImageFolder(root='path_to_train_data', transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=2) # 加载预训练的ResNet-18模型 model = models.resnet18(pretrained=True) # 冻结模型的参数 for param in model.parameters(): param.requires_grad = False # 替换最后一层全连接层 num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, num_classes) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9) # 将模型移动到GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 199: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0 print('训练完成!') ``` 注意替换代码中的`path_to_train_data`为你自己的训练数据集的路径。此外,还可以调整超参数并将模型训练在GPU上,以加快训练速度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值