python人脸特征提取_【Tool】Dlib 人脸特征提取

本文介绍了如何使用Dlib库进行人脸关键点提取和128维特征编码,该编码可用于人脸识别和分类任务。通过加载Celeba数据集,使用face_recognition模块进行特征提取,并使用SVM进行性别分类,测试取得99%的准确度。
摘要由CSDN通过智能技术生成

前面一篇文章讲了Dlib的人脸关键点提取: https://www.jianshu.com/p/5a49c157fd88

提取的关键点可以用于各种任务。

此外Dlib 提供了一个face embedding功能,简单来说就是将人脸编码为128维向量,这个向量可以用来分类,聚类,相似度计算等等。Python 包

数据集介绍

3029db2ebd5b

image.png

数据准备

Dlib人脸特征提取

先安装python face_recognition 模块:

pip3 install face_recognition

使用方法,调用face_recognition 的 face_encodings 模块:

face_embedding = fr.face_encodings(img)

face_embedding里面包含了img中人脸的编码,如果检测到多个人脸的话会包含多个人脸编码特征。

Dlib 的这个模型是在LFW数据集上训练的,也可以用来进行人脸识别等,人脸比对等。

有了特征还需要对应的分类,list_attr_celeba.csv 中包含了celeba数据集中的各个属性的label,这里我们只使用Male和Smiling两个属性。

一个可以参考的数据准备脚本:

import os

import timeit

import cv2

from skimage import io as io

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值