全双工放大转发中继器(FD AF relay)系统的信噪比
参考文献:https://ieeexplore.ieee.org/document/8811733
Q. Wu and R. Zhang, “Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming,” in IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394-5409, Nov. 2019, doi: 10.1109/TWC.2019.2936025.
1.系统模型
考虑一个中继辅助的AP-relay-User的SISO系统。AP,user均配备单天线。
AP到relay的信道为\boldsymbol{g} ,relay到User的信道为
h
r
H
\boldsymbol{h}_{r}^{H}
hrH。
中继器装备有N个发射天线,N个接收天线,当N足够大时,AP-User的直接链路可忽略。
假设中继采用线性接收和发射波束赋形向量,分别表示为
x
r
H
,
x
t
\boldsymbol{x}_{r}^{H},\boldsymbol{x}_t
xrH,xt。
另外,假设中继器可实现完美的自干扰消除(SIC)。
AP与relay的发射功率分别为
P
,
P
r
P,P_r
P,Pr。
User和relay处的噪声功率分别为
σ
2
,
σ
r
2
\sigma ^2,\sigma _{r}^{2}
σ2,σr2。
2.公式推导
记relay的增益为
G
G
G,则
G
=
P
r
/
∥
x
t
∥
2
P
∥
x
r
H
g
∥
2
+
∥
x
r
∥
2
σ
r
2
G=\frac{P_r/\left\| \boldsymbol{x}_{t} \right\| ^2}{P\left\| \boldsymbol{x}_{r}^{H}\boldsymbol{g} \right\| ^2+\left\| \boldsymbol{x}_{r}\right\| ^2\sigma_r ^2}
G=P∥xrHg∥2+∥xr∥2σr2Pr/∥xt∥2
User处信噪比为:
S N R = P ∥ x r H g ∥ 2 G ∥ h r H x t ∥ 2 ∥ x r ∥ 2 σ r 2 G ∥ h r H x t ∥ 2 + σ 2 = P P r ∥ x r H g ∥ 2 ∥ h r H x t ∥ 2 P r σ r 2 ∥ x r ∥ 2 ∥ h r H x t ∥ 2 + P σ 2 ∥ x t ∥ 2 ∥ x r H g ∥ 2 + ∥ x t ∥ 2 ∥ x r ∥ 2 σ r 2 σ 2 SNR=\frac{P\left\| \boldsymbol{x}_{r}^{H}\boldsymbol{g} \right\| ^2G\left\| \boldsymbol{h}_{r}^{H}\boldsymbol{x}_t \right\| ^2}{\left\| \boldsymbol{x}_r \right\| ^2\sigma _{r}^{2}G\left\| \boldsymbol{h}_{r}^{H}\boldsymbol{x}_t \right\| ^2+\sigma ^2} \\ \,\, =\frac{PP_r\left\| \boldsymbol{x}_{r}^{H}\boldsymbol{g} \right\| ^2\left\| \boldsymbol{h}_{r}^{H}\boldsymbol{x}_t \right\| ^2}{P_r\sigma _{r}^{2}\left\| \boldsymbol{x}_r \right\| ^2\left\| \boldsymbol{h}_{r}^{H}\boldsymbol{x}_t \right\| ^2+P\sigma ^2\left\| \boldsymbol{x}_t \right\| ^2\left\| \boldsymbol{x}_{r}^{H}\boldsymbol{g} \right\| ^2+\left\| \boldsymbol{x}_t \right\| ^2\left\| \boldsymbol{x}_r \right\| ^2\sigma _{r}^{2}\sigma ^2} SNR=∥xr∥2σr2G∥ ∥hrHxt∥ ∥2+σ2P∥ ∥xrHg∥ ∥2G∥ ∥hrHxt∥ ∥2=Prσr2∥xr∥2∥ ∥hrHxt∥ ∥2+Pσ2∥xt∥2∥xrHg∥2+∥xt∥2∥xr∥2σr2σ2PPr∥ ∥xrHg∥ ∥2∥ ∥hrHxt∥ ∥2
易知,最优的接收、发射波束赋形向量发别为
x
t
∗
=
h
r
∥
h
r
∥
,
x
r
∗
=
g
∥
g
∥
\boldsymbol{x}_{t}^{*}=\frac{\boldsymbol{h}_r}{\left\| \boldsymbol{h}_r \right\|},\boldsymbol{x}_{r}^{*}=\frac{\boldsymbol{g}}{\left\| \boldsymbol{g} \right\|}
xt∗=∥hr∥hr,xr∗=∥g∥g.
将其带入SNR公式中,可得
S
N
R
=
P
P
r
∥
g
∥
2
∥
h
r
∥
2
P
r
σ
r
2
∥
h
r
∥
2
+
P
σ
2
∥
g
∥
2
+
σ
r
2
σ
2
SNR=\frac{PP_r\left\| \boldsymbol{g} \right\| ^2\left\| \boldsymbol{h}_r \right\| ^2}{P_r\sigma _{r}^{2}\left\| \boldsymbol{h}_r \right\| ^2+P\sigma ^2\left\| \boldsymbol{g} \right\| ^2+\sigma _{r}^{2}\sigma ^2}
SNR=Prσr2∥hr∥2+Pσ2∥g∥2+σr2σ2PPr∥g∥2∥hr∥2