题目介绍:给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例:
输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-with-cooldown
个人解题思路:
由于交易状态分为三种:买入,卖出,冷冻期,并且买入后的一天必须为冷冻期,不能同时参加多笔交易,因此考虑每天的三种状态下的总收益。
首先初始化,如果第一天买入,则第一天买入得到的总收益是buy[0] = -1,即,还没卖出的情况下,付出了一块钱,总收益是-1;
然后考虑每种状态的对应的转移矩阵:
buy[i] = max(buy[i-1],cool[i-1]-prices[i]); //如果第i天是买入,获得的收益只有两种情况:1、前一天是冷却期,买入后收益为cool[i-1]-prices[i];2、前一天是买入,不能再次买入,因此第i天的收益是buy[i-1]。在两种情况中选择能获得最大收益的一种情况。
sell[i] = buy[i-1] +prices[i]; //如果第i天卖出,那么收益是前一天买入的最大收益加上第i天的股票的价格
cool[i] = max(sell[i-1],cool[i-1]); //第i天如果是冷却期,那就考虑上一天如果是卖和冷却操作中的最大收益,因为不考虑上一天是买入,买入需要花钱的~
代码如下:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
if(len <= 1) return 0;
vector<int>buy(len,0);
vector<int>sell(len,0);
vector<int>cool(len,0);
buy[0] = -prices[0];
for(int i = 1;i<len;i++)
{
sell[i] = buy[i-1] +prices[i];
buy[i] = max(buy[i-1],cool[i-1]-prices[i]);
cool[i] = max(sell[i-1],cool[i-1]);
}
return max(sell[len-1],cool[len-1]);
}
};