【七 (3)FineBI FCP模拟试卷-商品捆绑销售策略分析】

文章导航

【一 简明数据分析进阶路径介绍(文章导航)】

一、字段解释

MeaNames:商品名称
订单ID:交易订单ID
特价
原价

二、需求

使用点图进行商品关联分析,展示不同商品组合相对于平均支持度和平均置信度的位置,并且展示提升度的大小;
使用矩形块图,进行支持度、置信度、提升度分析;
使用表格进行关联商品、支持度、置信度、提升度进行相关数据的最终呈现。

  1. 支持度 (Support):支持度是两件商品(A∩B)在总销售笔数(N)中出现的概率,即A与B同时被购买的概率。//Support = Freq(A & B)/N
  2. 置信度 (Confidence):置信度是购买A后再购买B的条件概率。简单来说就是交集部分C在A中比例,如果比例大说明购买A的客户很大期望会购买B商品。//Confidence = Freq(A & B)/ Freq(A)
  3. 提升度 (Lift):提升度表示先购买A对购买B的概率的提升作用,用来判断规则是否有实际价值,即使用规则后商品在购物车中出现的次数是否高于商品单独出现在购物车中的频率。如果大于1说明规则有效,小于1则无效。//Lift= Support(A & B)/ (Support(A) * Support(B))

三、操作步骤

1、再次导入数据,并从再次导入中的数据中获取一列,并重命名字段,保存并更新数据

在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/b470cd21047c43159e77aca6b949f193.png

2、添加汇总列(购买A的订单数/购买B的订单数/同时购买A和B的订单数/总购买订单数)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、添加公式列(支持度、置信度、提升度)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4、去除AB相同的商品组合

当 A商品名称 和 B商品名称 相同时,它们是同一个产品,计算支持度、置信度、提升度没有意义。我们可以过滤掉这部分的商品组合,如下图所示:
在这里插入图片描述

5、保存并更新数据

在这里插入图片描述

6、绘制点图

在这里插入图片描述

7、绘制表格

在这里插入图片描述

8、绘制置信度矩形图

在这里插入图片描述

9、绘制支持度矩形图

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值