一、文章导航
【一 简明数据分析进阶路径介绍】
【二 如何培养业务理解能力】
【三 (1)数据处理工具之 SQL (定义、分类、执行顺序等)】
【三 (2)数据处理工具之 SQL (表连接)】
【三 (3)数据处理工具之 SQL (子查询、常用窗口函数)】
【三 (4)数据处理工具之 SQL (根据执行计划进行SQL调优实践)】
【三 (5)数据处理工具之 pandas用法大全】
【四 (1)数据可视化之如何选用正确的图表】
【四 (2)数据可视化之 Matplotlib 常用图表及代码实现 】
【四 (3)数据可视化之 Seaborn 常用图表及代码实现 】
【四 (4)数据可视化之 Ploty Express常用图表及代码实现 】
【四 (5)数据可视化之 Pyecharts常用图表及代码实现 】
【四 (6)数据可视化之 Grafana安装、页面介绍、图表配置】
【四 (7)可视化实战-微信聊天记录可视化】
【五 (1)统计学知识-初识统计数据】
【五 (2)统计学知识-集中趋势分析与分散和变异性描述代码实现】
【五 (3)统计学知识-概型与概率分布python代码实现】
【五 (4)统计学知识-抽样与置信python代码实现】
【五 (5)统计学知识-假设检验python代码实现】
【六 (1)机器学习-机器学习算法简介】
【六 (2)机器学习-EDA探索性数据分析模板】
【六 (3)机器学习-机器学习建模步骤/kaggle房价回归实战】
【六 (4)机器学习-回归任务-鲍鱼年龄预测xgboost、lightgbm实战】
【六 (5)机器学习-分类任务-kaggle泰坦尼克号宇宙飞船实战】
【六 (6)机器学习-分类任务-kaggle泰坦尼克号宇宙飞船实战使用BayesianOptimization搜索参数并用SequentialFeatureSelector进行特征选择】
【七 (1)FineBI FCP模拟试卷-股票收盘价分析】
【七 (2)FineBI FCP模拟试卷-平台新增用户留存分析】
【七 (3)FineBI FCP模拟试卷-商品捆绑销售策略分析】
【七 (4)FineBI FCP模拟试卷-电站数据分析】
【七 (5)FineBI FCP模拟试卷-母婴行业新零售连带消费分析】
【八 (1)指标体系建设-构建高效的故障管理指标体系】
【八 (2)指标体系建设-故障指标体系建设步骤】
【八 (3)指标体系建设-故障运营管理指标体系的关键成功因素】
持续更新中
二、什么是数据分析?
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总、理解和消化,以最大化地开发数据的功能,从而发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
三、本专栏的目的
本专栏专为对数据分析感兴趣的朋友们设计,旨在分享如何快速成长为初中级数据分析师的实用经验和技巧。从基础知识到进阶技能,带你一步步掌握数据分析的核心要领,轻松应对工作挑战。每周更新一篇,不容错过!
四、数据分析师的能力要求?
能力要求 | 初级数据分析师 | 中级数据分析师 | 高级数据分析师 |
---|---|---|---|
业务理解能力 | 了解业务背景和目标,能够与业务部门沟通获取数据需求 | 深入理解业务逻辑和挑战,为业务提供针对性的数据分析支持 | 预测业务趋势,提供前瞻性建议,并整合业务数据与其他数据源进行分析 |
数据处理能力 | 熟练掌握数据清洗、转换、整合等基本技能 | 高效运用编程语言进行数据处理,优化数据处理流程 | 精通大数据处理工具,管理大规模数据处理项目,确保数据质量和效率 |
数据可视化能力 | 利用图表、图形展示数据,帮助他人理解分析结果 | 熟练使用数据可视化工具,创建交互式的可视化作品 | 设计创新的数据可视化方案,提供深入的数据洞察和趋势分析 |
报告撰写能力 | 编写清晰、简洁的分析报告,传达分析结果和建议 | 撰写高质量的分析报告,包含深入的分析、结论和建议 | 撰写综合性分析报告,提供战略性建议,为高层管理人员提供决策支持 |
批判性思维 | 对数据和分析结果保持怀疑态度,避免盲目接受结论 | 分析数据中的潜在问题,提出合理的质疑和假设 | 深入探究数据背后的原因和逻辑,提供深入的见解和解释 |
沟通协作能力 | 与团队成员有效沟通,解释复杂的数据和分析结果 | 跨部门协作,与其他团队成员共同完成数据分析项目 | 领导团队进行数据分析项目,促进团队协作和知识共享 |
数据分析方法论 | 掌握常见的数据分析方法和流程 | 灵活运用数据分析方法,解决实际业务问题 | 创新数据分析方法,整合多种分析方法和技术,提供综合性分析解决方案 |
指标体系搭建 | 理解基本业务指标和计算方法 | 根据业务需求构建有效的数据指标体系 | 设计和优化综合性指标体系,为业务提供全面的监控和评估支持 |
统计学基础 | 掌握基本的统计概念和原理 | 熟练运用统计方法进行数据分析,并解释统计结果 | 深入研究高级统计概念,为复杂问题提供统计建模和解决方案 |
机器学习基础 | 了解机器学习的基本原理和常用算法 | 能够应用机器学习模型进行预测和分析,并解释模型的输出结果 | 精通机器学习算法,领导机器学习项目,提供创新的预测和分析解决方案 |
持续学习能力 | 关注行业动态,学习新知识和技能 | 主动学习并应用新技术和方法,提高数据分析能力 | 引领团队学习和发展,推动数据分析领域的创新和实践 |
数据安全意识 | 遵守数据保护和隐私法规,确保数据安全性 | 深入了解数据安全最佳实践,采取有效措施保护数据 | 领导数据安全管理,制定数据安全策略,确保组织数据的安全和合规性 |