Spark记录

Spark记录未整理,请以较平静的心态阅读。

更新已整理 2024-04-16

本文的目的就是要实现一个根据用户看过的anime_id做近似查找 (ANN, Approximate Nearest Neightbor),将相似的anime_id推荐给该用户。

为了做到这件事,我们要实现几个小模块

1)根据是anime_id构建一个邻接矩阵
2)构建转移矩阵和初始化矩阵(用于深度游走)
3)根据deepwalk算法实现固定长度的sample
4)使用spark的word2vec训练稠密向量
5)使用redis缓存user_id的embedding参数
6)使用局部敏感hash算法完成近似查找ANN

原始数据

原始数据集 
https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database

包引入

import pyspark
from pyspark import SparkContext
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
import os
import numpy as np
from collections import defaultdict

spark 运行需要jdk,导入环境变量JAVA_HOME
os.environ["JAVA_HOME"] = "/usr/lib/jvm/jre-1.8.0-openjdk" 

邻接矩阵构建

row和col是anime_id,值是看过行anime_id又看过列anime_id的user_id数
邻接矩阵格式如下(示例)

anime_id2081170263
200122
8110
17020
26320
spark = SparkSession.builder.appName("feat-eng").getOrCreate()

rating_df = spark.read.csv(
    "/data/jupyter/recommendation_data/rating.csv", header=True, inferSchema=True
)
rating_df = rating_df.where("rating > 7")

watch_seq_df = rating_df.groupBy("user_id").agg(
    F.collect_list(F.col("anime_id").cast("string")).alias("anime_ids")
)

# print(watch_seq_df.show(2))
# +-------+--------------------+
# |user_id|           anime_ids|
# +-------+--------------------+
# |    148|[20, 81, 170, 263...|
# |    463|[20, 24, 68, 102,...|
# +-------+--------------------+
# print(watch_seq_df.printSchema())
# root
#  |-- user_id: integer (nullable = true)
#  |-- anime_ids: array (nullable = true)
#  |    |-- element: string (containsNull = false)

# 转成一个list
watch_seq = watch_seq_df.collect()
# watch_seq格式 [[20, 81, 170, 263,...],...]
watch_seq = [s["anime_ids"] for s in watch_seq]

# 邻接矩阵
matrix = defaultdict(lambda: defaultdict(int))

for i in range(len(watch_seq)):
    seq = watch_seq[i]
    for x in range(len(seq)):
        for y in range(x + 1, len(seq)):
            a = seq[x]
            b = seq[y]
            if a == b:
                continue  # 对角线不统计
            matrix[a][b] += 1
            matrix[b][a] += 1

matrix["20"] 打印格式如下:

matrix={anime_id:{anime_id:int}}

{"20":{"81":1,"170":2,...}}

表示同时看过20和81的人数为1; 同时看过20和170的人数为2;具体如下:

print(matrix["20"])

在这里插入图片描述

转移矩阵和初始化矩阵

概率转移矩阵:决定当前节点在deepwalk中如何选择下一个节点
入口转移矩阵:deepwalk 初始化时如何选择的节点

概率转移矩阵格式:某一个anime_id的neighbours和他的转移概率probs

{
    "anime_id": {
        "neighbours": [2, 3, 5, 7],
        "probs": [0.16, 0.16, 0.32, 0.32]
    },
}

入口转移矩阵定义:每一个anime_id和邻居节点观看总人数除以所有anime_id和邻居节点观看总人数

[0.001953672356421993, 0.0004123166720890604, 0.0008729517041885576, ...]
def get_transfer_prob(vs):
    # vs是dict
    neighbours = list(vs.keys())
    total_weight = sum(vs.values())
    probs = [vs[k] / total_weight for k in vs.keys()]

    return {"neighbours": neighbours, "prob": probs}

tranfer_probs = {k: get_transfer_prob(v) for k, v in matrix.items()}

entrance_items = list(tranfer_probs) # 将字典的key转成list
# anime_id=k的所有的邻居节点的总和
neighbour_sum = {k: sum(matrix[k].values()) for k in entrance_items}
# neighbour_sum={'20': 1213,
#  '81': 256,
#  '170': 542,
#  '263': 649,
#   ...
# }
total_sum = sum(neighbour_sum.values())

# 入口转移矩阵
entrence_probs = [neighbour_sum[i] / total_sum for i in entrance_items]
# entrence_probs=[0.001953672356421993,
#  0.0004123166720890604,
#  0.0008729517041885576,
#  0.001045287188225782,
#  0.0008278545681788165,
#  ...
# ]

构建随机游走

流程:
1)在入口转移概率entrance_items中随机选一个节点,加入路径中
2)循环length次在转移概率tranfer_probs中随机选一个节点,加入路径中
3)更新当前节点
4)重复循环形成一个length+1的一个节点路径
4)外部循环n次形成n组采样

import numpy as np

rng = np.random.default_rng()


# tranfer_probs=
#     {
#         "1": {
#             "neighbours": [2, 3, 5, 7],
#             "prob": [0.16, 0.16, 0.32, 0.32]
#            }
#     },
def one_walk(length, entrance_items, entrence_probs, tranfer_probs):
    """
    length (int): 采样长度
    entrance_items (list): anime_id
    entrence_probs (list): entrance_itemsd对应的概率
    tranfer_probs (_type_): 每个anime_id的转移概率矩阵
    """

    # 根据这个概率entrence_probs从entrance_items中随机选择一个
    start_point = rng.choice(entrance_items, 1, p=entrence_probs)[0]
    path = [str(start_point)]
    current_point = start_point

    for _ in range(length):
        neighbours = tranfer_probs[current_point]["neighbours"]  #current_point选一个邻居节点
        transfor_prob = tranfer_probs[current_point]["prob"]  # 根据这个概率选择
        next_point = rng.choice(neighbours, 1, p=transfor_prob)[0]
        path.append(str(next_point))
        current_point = next_point

    return path


n = 500  # 考虑计算量只生成500个数据,每个数据的长度为21
sample = [one_walk(20, entrance_items, entrence_probs, tranfer_probs) for _ in range(n)]

sample采样结果如下,数字代表anime_id:

在这里插入图片描述

spark的word2vec

将sample采样后数据转化成DataFrame格式,利用spark的word2vec转化为稠密向量。

from pyspark.ml.feature import Word2Vec
# 转化为 DataFrame
sample_df = spark.createDataFrame([[row] for row in sample], ["anime_ids"])
item2vec = Word2Vec(vectorSize=5, maxIter=2, windowSize=15)  # skip model
item2vec.setInputCol("anime_ids")
item2vec.setOutputCol("anime_ids_vec")
model = item2vec.fit(sample_df)

# 这里是找到和anime_id=20比较近的10条数据
# rec = model.findSynonyms("20", 10)

# 获取训练参数,便于进行下一步操作
item_vec = model.getVectors().collect()
item_emb = {}
for item in item_vec:
    # print(item.word) # 9936
    # print(item.vector.toArray()) # [-0.01321484  0.18788637  0.01939221  0.15455356  0.00537518]
    # break
    item_emb[item.word] = item.vector.toArray()
    
# 测试获取结果
# item_emb["20"]
# # array([ 0.00960128, -0.1283727 , -0.01474599, -0.1391744 , -0.14709859])

build_user_emb函数根据前面将某一个用户看过的所有anime_id逐个进行embedding,之后平均处理。这样最终我们就可以根据某一个用户看过的所有anime_id获得某一个用户的embedding。

@F.udf(returnType="array<float>")
def build_user_emb(anime_seq):
    anime_embs = [item_emb[aid] if aid in item_emb else [] for aid in anime_seq]
    anime_embs = list(filter(lambda l: len(l) > 0, anime_embs))
    emb = np.mean(anime_embs, axis=0)
    return emb.tolist()


user_emb_df = watch_seq_df.withColumn("user_emb", build_user_emb(F.col("anime_ids")))
print(user_emb_df.show(3))
# +-------+--------------------+--------------------+
# |user_id|           anime_ids|            user_emb|
# +-------+--------------------+--------------------+
# |    148|[20, 81, 170, 263...|[0.22693123, -0.0...|
# |    463|[20, 24, 68, 102,...|[0.24494155, -0.0...|
# |    471| [1604, 6702, 10681]|[0.37150145, 0.04...|
# +-------+--------------------+--------------------+

redis缓存user_id的embedding

使用docker在本地器起一个redis服务

from redis import Redis

redis = Redis()
user_emb = user_emb_df.collect()
# user_id和其对应的embedding
user_emb = {row.user_id: row.user_emb for row in user_emb}

# 辅助函数将float类别转化为字符串用:分割
def vec2str(vec):
    if vec is None:
        return ""
    return ":".join([str(v) for v in vec])

def save_user_emb(embs):
    str_emb = {item_id: vec2str(v) for item_id, v in embs.items()}
    redis.hset("recall-user-emb", mapping=str_emb)

# 用户的embedding保存到redis
save_user_emb(user_emb)
# test语句
# redis.hget("recall-user-emb", "148")
# # b'0.140301913022995:-0.06533453613519669:-0.10318902134895325:0.07486995309591293:0.022806329652667046'

读取redis中数据

# 将str读成float的list
def str2vec(s):
    if len(s) == 0:
        return None
    return [float(x) for x in s.split(":")]

def load_user_emb():
    result = redis.hgetall("recall-user-emb")
    return {user_id.decode(): str2vec(emb.decode()) for user_id, emb in result.items()}
# 读取所有数据
load_user_emb()

近似查找ANN算法

使用包faiss的局部敏感hash函数(LSH)

pip install faiss-cpu # 加载包
官网 https://github.com/facebookresearch/faiss
import faiss
import numpy as np

emb_items = item_emb.items()
# emb_items 格式
# dict_items([('9936', array([-0.02695967, -0.14685549, -0.13547155, -0.00479672, -0.00417542])), 
#('710', array([ 0.03320758, -0.11462902,  0.17806329, -0.3202453 ,  0.12857111])),...])
emb_items = list(__builtin__.filter(lambda t: len(t[1]) > 0, emb_items))
# user_id
item_ids = [i[0] for i in emb_items]
# user_id对应的embedding
embs = [i[1] for i in emb_items]

index = faiss.IndexLSH(len(embs[0]), 256)
index.add(np.asarray(embs, dtype=np.float32))
# 查找embs[99]=[-0.03878592  0.15011692  0.01134511  0.03049661  0.11688153]最接近的10个原始向量
# D 是距离(faiss内部定义) I 是原始向量的index
D, I = index.search(np.asanyarray([embs[99]], dtype=np.float32), 10)
print(D) # [[ 0.  8. 23. 25. 29. 32. 33. 33. 39. 39.]]
print(I) # [[ 99 690 540 347 754 788 170 186 206 612]]

最后我们通过user观看所有anime的一个平均词嵌入embs[99],然后根据这个词嵌入寻找到10个(包含本身)与之相似的anime_id的词嵌入,从而可以获得这9个anime推荐给该用户。

similar_anime_id = [item_ids[i] for i in I[0][1:]]
  • 14
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值