12.30阅读论文笔记:Physics-Informed Neural Networks for Power Systems

Physics-Informed Neural Networks for Power Systems

George S. Misyris, Andreas Venzke and Spyros Chatzivasileiadis

Physics Informed Neural Networks:

  • 自动微分:神经网络输出相对于输入的导数可以在训练过程中计算
  • 物理系统的微分代数模型可以包含在神经网络训练中
  • 神经网络现在可以利用实际物理系统的知识
  • 像Tensorflow这样的机器学习平台能够实现这些功能

主要工作:
1)提出了物理信息神经网络
(i)准确地确定微分方程的解,从而确定电力系统的动态值,如转子角度和频率
(ii)识别不确定的电力系统参数。与之前的方法相反,物理信息神经网络利用了底层的物理模型,从而显著减少了计算时间,并需要更少的训练数据。
2)对于单机无限总线(SMIB)系统,我们表明,物理信息神经网络
(i)预测系统动力学具有较高的精度,且比传统方法所需的计算时间小很多(在我们的研究中是28-87倍)
(2)能够高精度地识别惯性、阻尼等不确定系统参数。
第二部分描述了所采用的电力系统模型,并介绍了基于物理信息的神经网络的体系结构。
第三节给出了模拟结果,演示了物理信息神经网络的性能。
第四节讨论了成功应用这一概念所带来的挑战和机遇。第五部分是结论。

II. METHODOLOGY
A. 电力系统动力学的物理模型
电力系统动力学最简单和最常见的描述形式是摆动方程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值