Physics-Informed Neural Networks for Power Systems
George S. Misyris, Andreas Venzke and Spyros Chatzivasileiadis
Physics Informed Neural Networks:
- 自动微分:神经网络输出相对于输入的导数可以在训练过程中计算
- 物理系统的微分代数模型可以包含在神经网络训练中
- 神经网络现在可以利用实际物理系统的知识
- 像Tensorflow这样的机器学习平台能够实现这些功能
主要工作:
1)提出了物理信息神经网络
(i)准确地确定微分方程的解,从而确定电力系统的动态值,如转子角度和频率
(ii)识别不确定的电力系统参数。与之前的方法相反,物理信息神经网络利用了底层的物理模型,从而显著减少了计算时间,并需要更少的训练数据。
2)对于单机无限总线(SMIB)系统,我们表明,物理信息神经网络
(i)预测系统动力学具有较高的精度,且比传统方法所需的计算时间小很多(在我们的研究中是28-87倍)
(2)能够高精度地识别惯性、阻尼等不确定系统参数。
第二部分描述了所采用的电力系统模型,并介绍了基于物理信息的神经网络的体系结构。
第三节给出了模拟结果,演示了物理信息神经网络的性能。
第四节讨论了成功应用这一概念所带来的挑战和机遇。第五部分是结论。
II. METHODOLOGY
A. 电力系统动力学的物理模型
电力系统动力学最简单和最常见的描述形式是摆动方程: