3.20阅读论文--A stock price prediction method based on meta-learning and variational mode decomposition

今日看论文的目的:想搞清MAML的训练与测试差异比较大时,怎样获得较好的输出?

论文main idea: 将整个股票价格序列分割成多窗口序列,对窗口序列进行VMD分解得到子序列。子序列通过LSTM+MAML预测,最后集成子序列的预测结果。

  1. 分解方法 Decomposition-based hybrid methods
    主要思想是“分解-预测-集合”,即将原始时间序列分解为一组子序列,然后利用预测模型来预测子序列。
    已有的不同结构:
    1)每个子序列使用一个模型,分别获得子序列的预测结果,然后合并子序列的预报结果。
    2)所有子序列一起放入一个预测模型中,无需进一步合并操作即可直接从模型中获得最终结果。
    3)用变分模态分解(VMD)对原始时间序列进行分解,得到不同的模态分量和残差项,然后用集成经验模态分解(EEMD)对残差项进行分解。
    预测模型:ARIMA、GARCH、SVM、LSTM和CNN等
    分解算法:小波变换、经验模式分解(EMD)和变分模式分解(VMD)

  2. 产生任务集
    数据归一化
    设窗口长度为L。
    输入:要预测Xt+1时刻的股价,则使用{Xt-L+1,…Xt } 这段序列。对这段序列进行分解,得到一系列的子序列。这些子序列是输入,被输入到各自网络中。
    输出:对{Xt-L+1,…,Xt,Xt+1} 这段序列分解,取其中最后一个值作为输出/标签。
    任务集:每个任务中包含6对输入输出对,其中5对是support,1对是query.

  3. 参数值
    分解数K:分别计算K=2,3,…,9时的皮尔逊相关系数。
    窗口大小:分别对5,10,15,20的窗口大小进行实验,对比结果。

  4. 对比试验
    1)与最新的技术对比
    2)逐步验证模型:LSTM、MAML+LSTM、VMD-LSTM、DWT-MAML-LSTM、EMD-MAML-LSTM、EEMD-MAML-LSTM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值