10.31阅读论文笔记Online State of Health Estimation Method for Lithium-ion Battery Based on CEEMDAN for...

Online State of Health Estimation Method for Lithium-ion Battery Based on CEEMDAN for Feature Analysis and RBF Neural Network

Ling Mao等人
DOI 10.1109/JESTPE.2021.3106708
IEEE Journal of Emerging and Selected Topics in Power Electronics

主要贡献:

  • PCA:通过主成分分析,从一些相对容易获得的充放电特征中选取Urec、Ucc和tchg来描述电池老化现象
  • Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN):利用带自适应噪声的完全集合经验模式分解(CEEMDAN)将原始特征数据分解和去噪为主要趋势和次要波动
  • 分别通过基于滑动时间窗的logistic回归和卡尔曼滤波器进行预测
  • 预测结果作为RBF的输入,通过在线更新神经网络的权值以SOH估计。

**验证数据:**NASA Ames Center of excellence database(PCoE)

  1. 四个特征:
    恒流充电时间tchg、恒流充电电压Ucc、最小充电电压Umin、恢复电压Urec

  2. PCA
    标准化数据、计算协方差矩阵、求协方差矩阵的特征向量,将特征值按从大到小的顺序排列,特征值越大的新基对应的新样本属性就越重要,可以按需舍最后面特征值较小对应的特征向量。

  3. 经验模态分析(Empirical Mode Decomposition,EMD)
    是1998年提出的,依据数据自身的时间尺度特征来进行信号分解,无需预先设定任何基函数,是一种时频域信号处理方式。
    使复杂信号分解为有限个“本征模函数”(Intrinsic Mode Function,简称IMF)
    详细介绍:https://blog.csdn.net/fengzhuqiaoqiu/article/details/101157463?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-101157463-blog-119249204.pc_relevant_landingrelevant&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-101157463-blog-119249204.pc_relevant_landingrelevant&utm_relevant_index=1

  4. EEMD,集合经验模态分解:
    经验模态分解存在严重的模态混叠,就会导致特征提取的不完善,于是就有了改进----集合经验模态分解EEMD。它针对EMD方法的不足,是一种噪声辅助数据分析方法。EEMD是利用噪声辅助的方式,在整个信号加入噪声。当噪声充斥满整个信号,对信号每做一次测试所得到的信号含噪都不一样,然后进行多次测量,最后取平均值,大概就能消除噪声,最后保留的就是信号本身。
    分解步骤:
    1.将正态分布的白噪声加到原始信号;
    2.将加入白噪声的信号作为一个整体,然后进行EMD分解,得到各IMF分量;
    3.重复步骤1和2,每次加入新的正态分布白噪声序列;
    4.将每次得到的IMF做集成平均处理后作为最终结果
    ————————————————
    版权声明:上一段为CSDN博主「追剧入迷人」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/abc1234abcdefg/article/details/123368565
    ————————————————

  5. CCEMDAN,完全噪声辅助聚合经验模态分解
    参见:https://blog.csdn.net/nameacity/article/details/117552217

  6. 逻辑回归+滑动视窗LR-STW
    从本质上来说,逻辑回归训练后的模型是平面的一条直线(p=2),或是平面(p=3),超平面(p>3)。并且这条线或平面把空间中的散点分成两半,属于同一类的数据大多数分布在曲线或平面的同一侧。
    逻辑回归基础参见:https://blog.csdn.net/weixin_60737527/article/details/124141293?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522166720801416800184157669%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=166720801416800184157669&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2alltop_positive~default-1-124141293-null-null.142v62pc_search_tree,201v3add_ask,213v1t3_control2&utm_term=%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92&spm=1018.2226.3001.4187

  7. RBF神经网络
    用RBF的隐单元的“基”构成隐藏层空间,这样就可以将输入矢量直接(不通过权连接)映射到隐空间。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络输出是隐单元输出的线性加权和,此处的权即为网络可调参数。
    通常采用两步过程来训练RBF网络:第一步,确定神经元中心,常用的方式包括随机采样、聚类等;第二步,利用BP算法等来确定参数。
    RBF网络学习收敛得比较快的原因:当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。
    视频参见:https://www.bilibili.com/video/BV1n7411J77E/?spm_id_from=333.337.search-card.all.click&vd_source=c6bae1348239906eeec7ab9fb58927a3

思路总结:先用PCA在4个特征中选3个,通过预测3个特征信号来预测SOH。用CEEMDAN分别将三个信号分解成IMF,并计算每个IMF和特征信号之间的PCC,将PCC最接近1的IMF作为major trend, 其他的和作为minor fluctuation. 使用LR-STW预测三个信号的major trend,卡尔曼滤波预测minor fluctuation,两部分相加为三个特征信号的预测结果。输入到RBF中,输出为SOH,训练网络。

  1. 对比实验:①验证特征选择方案的准确性,与不同特征选择方案进行比较;②所提出的方法与KF/SVR/LSTM方法对比
  2. 今后方向:在本文中,NASA数据集充放电机制系统稳定运行。然而真实场景中,电动汽车所处的环境高度复杂,可能会造成数据的不完整性和多样性。因此为提高预测的稳健性和准确性,1. 考虑在模型中加入不同的环境变量 2. 实时收集的碎片信息可以用来与数据库中的完整信息进行比较。因此可利用实验数据对测量数据进行修正,以获得所需的数据
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值