1.3读论文笔记:M. Raissi a等人的Physics-informed neural networks:A deep learning framework for solving forw..

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
M. Raissi , P. Perdikaris , G.E. Karniadakis
这篇文章是从在一篇文献(Physics-Informed Neural Networks for Power Systems)中反复出现的,参考了里面的很多,所以打算拿出来看看。还是以知云的翻译为主。理论性比较强,以了解思路为主,暂时还没每个公式仔细看与编程实现。
**摘要:**引入 physics-informed neural networks——其中神经网络被训练来解决监督学习任务,同时遵守由一般非线性偏微分方程所描述的任何给定的物理定律。这项工作主要解决两类问题:数据驱动的解决方案和偏微分方程的数据驱动发现。根据可用数据的性质和排列,我们设计了两种不同类型的算法,即连续时间模型和离散时间模型。第一类模型形成了一个新的数据高效时空函数逼近器家族,而后者允许使用任意精确的隐式龙格-库塔时间步进方案,具有无限数量的阶段。通过一系列经典问题,如流体、量子力学、反应扩散系统和非线性浅水波的传播,证明了该框架的有效性。
1. Introduction
在小数据的情况下,绝大多数最先进的机器学习技术(如深度/卷积/循环神经网络)都缺乏鲁棒性,无法提供任何收敛保证。对于物理和生物系统建模的许多案例来说,存在大量的先验知识,而这些知识目前还没有被用于现代机器学习实践。如果是原则性的物理法则,或者是一些经验验证的规则或其他领域的专业知识,控制着系统的时间依赖的动态

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值