Coursera-Mathematics for Machine Learning: PCA Week2

该博客探讨了机器学习中PCA分析的数学基础,详细阐述了点积(dot product)和内积(inner product)的区别,包括它们在计算向量长度、度量向量间距离以及确定角度上的应用。还提到了角度单位从弧度到度的转换。配合GitHub资源,提供了深入理解的实践材料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GitHub链接:https://github.com/schostac/Mathematics-for-Machine-Learning/tree/master/principal_component_analysis

Numpy tutorial:
https://github.com/schostac/Mathematics-for-Machine-Learning/tree/master/principal_component_analysis

Dot product和Inner product不同

inner product是两个向量直接乘,dot product需要转置。
在这里插入图片描述
The real dot product is just a special case of an inner product.
inner product必须symmetric,positive definite,bilinear
在这里插入图片描述

Dot product

在这里插入图片描述

Inner product

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值