集对分析法(Set Pair Analysis,简称SPA)是一种用于处理不确定性和模糊性问题的分析方法。它通过将不同的集合进行比较,来揭示系统中各个因素之间的关系和相似性。SPA特别适用于解决那些具有多重不确定性和复杂关系的系统问题,广泛应用于管理学、工程学、经济学等领域。
具体来说,集对分析法通过引入“集对”这一概念,来刻画不同对象之间的关系。每一对集合都会通过一组对比指标来表示其相似性、对立性和不确定性,常见的对比指标包括一致性、对立性和不确定性。
SPA的步骤通常包括以下几个过程:
- 定义集对:选择需要比较的对象,并确定其集合。
- 构建关联度矩阵:通过计算集对之间的一致性、对立性和不确定性,形成一个矩阵。
- 分析与决策:通过矩阵中的信息进行进一步的分析和决策支持。
集对分析法的优势在于其灵活性和能够处理不确定性和复杂关系的能力。
集对分析法(SPA)与熵权法结合时,熵权法用于计算各个指标的权重,从而在集对分析法中为不同的评价指标赋予相应的权重。下面是结合这两种方法的数学公式描述。
1. 熵权法计算指标权重
熵权法基于信息熵的概念,通过计算每个指标的信息熵来确定其权重。具体步骤如下:
步骤 1:构建决策矩阵
假设有 m m m 个方案和 n n n 个评价指标,决策矩阵为 X = ( x i j ) X = (x_{ij}) X=(xij) ,其中 x i j x_{ij} xij 表示第 i i i 个方案在第 j j j 个指标下的取值。
X = ( x 11 x 12 … x 1 n x 21 x 22 … x 2 n ⋮ ⋮ ⋱ ⋮ x m 1 x m 2 … x m n ) X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix} X= x11x21⋮xm1x12x22⋮xm2……⋱…x1nx2n⋮xmn
步骤 2:归一化处理
对决策矩阵 X X X 进行归一化处理,得到归一化矩阵 X ′ = ( x i j ′ ) X' = (x'_{ij}) X′=(xij′) ,其中:
x i j ′ = x i j ∑ i = 1 m x i j 2 x'_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}} xij′=∑i=1mxij2xij
步骤 3:计算每个指标的熵值
对每个指标 j j j ,计算其信息熵 e j e_j ej,熵值的计算公式如下:
e j = − 1 ln ( m ) ∑ i = 1 m p i j ln ( p i j ) e_j = -\frac{1}{\ln(m)} \sum_{i=1}^{m} p_{ij} \ln(p_{ij}) ej=−ln(m)1i=1∑mpijln(pij)
其中, p i j = x i j ′ ∑ i = 1 m x i j ′ p_{ij} = \frac{x'_{ij}}{\sum_{i=1}^{m} x'_{ij}} pij=∑i=1mxij′xij′ 为归一化后的比重。
步骤 4:计算权重
熵权法通过熵值计算每个指标的权重,权重 w j w_j wj 计算公式为:
w j = 1 − e j ∑ j = 1 n ( 1 − e j ) w_j = \frac{1 - e_j}{\sum_{j=1}^{n} (1 - e_j)} wj=∑j=1n(1−ej)1−ej
2. 集对分析法(SPA)结合熵权法
集对分析法结合熵权法时,权重 w j w_j wj 会被用于集对分析中的关系矩阵的计算。具体来说,假设有一组集对 A A A 和 B B B ,每个集对的关系矩阵表示为 R = ( r i j ) R = (r_{ij}) R=(rij) ,其中 r i j r_{ij} rij 表示第 i i i 个方案与第 j j j 个指标之间的关系。集对分析法通过以下公式计算每个方案的综合得分:
S i = ∑ j = 1 n w j ⋅ r i j S_i = \sum_{j=1}^{n} w_j \cdot r_{ij} Si=j=1∑nwj⋅rij
其中, r i j r_{ij} rij 可以通过集对分析中的一致性、对立性和不确定性来表示,具体计算方法依据实际问题而定。
综合公式
结合上述方法,综合得分
S
i
S_i
Si 为:
S
i
=
∑
j
=
1
n
(
1
−
e
j
∑
j
=
1
n
(
1
−
e
j
)
)
⋅
r
i
j
S_i = \sum_{j=1}^{n} \left( \frac{1 - e_j}{\sum_{j=1}^{n} (1 - e_j)} \right) \cdot r_{ij}
Si=j=1∑n(∑j=1n(1−ej)1−ej)⋅rij
通过这种方式,熵权法的权重被引入集对分析法中,从而优化了对指标的评估与决策过程。