【RONO】RONO: Robust Discriminative Learning with Noisy Labels for 2D-3D Cross-Modal Retrieval

**RONO:**带有噪声标签的 2D-3D 跨模态检索
**论文地址:**https://openaccess.thecvf.com/content/CVPR2023/papers/Feng_RONO_Robust_Discriminative_Learning_With_Noisy_Labels_for_2D-3D_Cross-Modal_CVPR_2023_paper.pdf
**项目地址:**https://github.com/penghu-cs/RONO

在这里插入图片描述

1. RONO 概述

1.1 RONO 背景与意义

  • 现在有越来越多 2D(图像)和3D(点云/模型)数据,跨模态检索(比如用图像找对应的3D模型,或反过来)变得很热门。
  • 问题:
    • 2D 和 3D 数据差异大(结构不一样、语义对齐难)。
    • 数据标注不完美(标签有错误、模糊、噪声)。

2. RONO 模型详解

符号:

  • 多模态数据集:D={ Mj}j=1M={ Xj,Yj}j=1N\mathcal{D} = \{\mathcal{M}_j \}_{j=1}^{M} = \{ \mathcal{X}_j,\mathcal{Y}_j\}_{j=1}^{N}D={ Mj}j=1M={ Xj,Yj}j=1N
    • MMM:模态的数量。
    • NNN:样本的数量。
    • KKK:类别的个数。
  • Mj={ (xij,yij)}i=1N\mathcal{M}_j = \{(x_i^j,y_i^j)\}_{i=1}^{N}Mj={(xij,yij)}i=1N
    • NNN:样本的个数 。
    • (xij,yij)(x_i^j,y_i^j)(xij,yij):第 iii 个样本在第 jjj 个模态上的输入类别标签。(可能有噪声)

2.1 RDCL 模块

Robust Discriminative Center Learning(鲁棒判别中心学习)

2.1.1 对比中心误差 ttt

**目的:**测量公共表示(zi\mathbf{z}_izi)与聚类中心(ck\mathbf{c}_kck)之间的语义差异,衡量样本和各类中心之间的差异。

tij=1K−1∑k≠yie ck⊤zij⏟与错误中心的平均相似−e cyi⊤zij⏟与正确中心的相似 t_i^j =\underbrace{\frac{1}{K-1}\sum_{k\neq y_i} e^{\,c_k^\top z_i^j}}_{\text{与错误中心的平均相似}} -\underbrace{e^{\,c_{y_i}^\top z_i^j}}_{\text{与正确中心的相似}} tij=与错误中心的平均相似 K11k=yieckzij与正确中心的相似

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FOUR_A

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值