$6 多项式【提纲】

§6 多项式

C1 多项式环

1)单变元多项式:

  • 多项式环:含单位元交换环A上定义一个环B:

    • 元素为有限序列f=(f0,f1,),fiAf = (f_0,f_1,\dots),f_i\in A
    • 加法:分量相加,f+g=(f0+g0,)f+g = (f_0+g_0,\dots)
    • 乘法:分量乘积下标和相同累加,fg=(h0,),hk=i+j=kfigjf\cdot g = (h_0,\dots),h_k = \sum_{i+j=k}f_ig_j
    • 单位元:即环A的单位元 1
  • 易得,环B是一个含单位元交换环。记为A[X],称A上单变元X的多项式环,元素称为多项式

  • 变元(未定元):序列(0,1,0,0,)(0,1,0,0,\dots),记为XX

    • 易得,X2=(0,0,1,0,,0);Xn=(0,0,,0n,1,0)X^2 = (0,0,1,0,\dots,0);X^n = (\underbrace{0,0,\dots,0}_n,1,0\dots)
    • 进一步,多项式可唯一表示为f=i=0nfiXi,fif = \sum_{i=0}^nf_iX^i,f_i称为系数f0f_0常数项fnf_n首项
    • f=0    i,fi=0f = 0 \iff\forall i,f_i = 0零多项式
    • n称次数,记为degf\deg f,一次多项式又称线性多项式。
      易得,deg(f+g)max{degf,degg};deg(fg)degf+degg\deg(f+g)\le \max\{\deg{f},\deg{g}\};\deg(fg)\le \deg{f}+\deg{g}
  • 定理:若A是整环,则A[X]是整环

    小证:fn0,fn0    fnfn=fn+n0f_n\neq 0,f_{n'}\neq 0\implies f_nf_{n'} = f_{n+n'}\neq 0

  • 定理:若交换环R含有子环A,则tR,1Πt():A[X]R,s.t.:aA,Πt(a)=a,Πt(X)=t\forall t \in R,\exist_1 \Pi_t(同态):A[X]\to R,s.t.:\forall a\in A,\Pi_t(a) = a,\Pi_t(X) = t

    小证:实际上该同态为Πt(f)=i=0nfiti\Pi_t(f) = \sum_{i=0}^nf_it^i

    • 该同态实际上计算了多项式在X=t上的唯一取值
    • 若存在多项式fA[X]f \in A[X]tt上的取值为0,则称tt为A上的代数元
    • Πt\Pi_t是一个单同态(kerΠt={0}\ker\Pi_t=\{0\},即无非零解),则称tt是一个A上超越元
    • 特别地,A=Q,R=CA = \mathbb{Q},R=\mathbb{C}时,称为代数数超越数
  • 定理:A,R为任意交换环,若存在同态ϕ:AR\phi:A\to R是环同态,则可唯一扩充为ϕt:A[X]R\phi_t:A[X]\to R,它计算取值

    小证:与前一定理的区别只在于A与R上运算不是相同的而是同态的

2)多变元多项式:

  • 多变元多项式环:记为A[X1,…,Xn],可由低维环递归定义

    例如,令B = A[X]代替A,类似B的定义去定义一个新环C = B[Y],Y是一个新的变元

  • 多变元多项式唯一表示:f=(i)a(i)X(i),(i)=(i1,,in),a(i)=ai1i2in,X(i)=X1i1Xninf = \sum_{(i)}a_{(i)}X^{(i)},(i)=(i_1,\dots,i_n),a_{(i)} = a_{i_1 i_2 \dots i_n},X^{(i)} = X_1^{i_1}\dots X_n^{i_n}

  • f=0    (i):a(i)=0f = 0 \iff \forall (i): a_{(i) = 0}

  • 次数:

    • XkX_k的最大指数称关于XkX_k的次数,记为degkf\deg_k{f}
    • 单项式X(i)=X1i1XninX^{(i)}=X_1^{i_1}\dots X_n^{i_n}的**(全)次数**为k=1nik\sum_{k=1}^n i_k
    • 若所有单项式的次数相同,称为齐次多项式
    • 单项式次数中最大的称为多项式f的(全)次数,记为degf\deg{f}。规定 deg0=\deg {0}= -\infin
  • (归纳)定理:若A是整环,则A[X1,…,Xn]是整环

  • (易证)定理:A上任意两个n变元多项式f,g,有degfg=degf+degg\deg{fg} = \deg{f}+\deg{g}

C2 多项式因式分解

1)带余除法:

  • 定理:若A为整环,g是A[x]中多项式,首项系数可逆,则fA[X],2q,rA[X],s.t. f=pq+r,degr<degg\forall f \in A[X],\exist_2 q,r\in A[X],s.t. \ f = pq +r,\deg{r}\lt \deg{g},且商qq和余数rr都在环A[X]中
    • 小证:欧几里得算法,归纳除即可
  • r=0r = 0,称整除
  • 注记:首项系数为1的多项式称为首一多项式
  • x4+4=(x22x+2)(x2+2x+2)x^4+4=(x^2-2x+2)(x^2+2x+2)

2)整除cR:b=ac\exist c\in R:b=ac,称a整除b,记为aba|b

  • 性质:
    • 传递性:ab,bc    aca|b,b|c\implies a|c
    • 线性:abi,i=1,2,,m    c1,cm:ai=1mbicia|b_i,i=1,2,\dots,m\implies\forall c_1,\dots c_m:a|\sum_{i=1}^m b_ic_i

3)相伴abba    u:b=ua,u1a|b \vee b|a\iff \exist u: b=ua,u|1(即uu可逆)

  • 整数环Z\Z中,可逆元为±1\pm1
  • 多项式整环上可逆元就是整环上可逆元

4)素元(既约元)不可逆且不能表述为p=ab,a1,b1p=ab,a\nmid1,b\nmid1

  • 显然,域中非零元都可逆,故没有素元
  • 多项式环中的素元称为既约多项式
  • 素元的相伴元仍是素元

5)唯一因子分解环:整环R使得:Ⅰ非零元素均可表示为形式:a=up1p2pr,u1,pia = up_1p_2\dots p_r,u|1,p_i为素数;Ⅱ若有另一分解a=vq1q2qsa = vq_1q_2\dots q_s,则r=sr=s,且适当选取qiq_i的顺序,能使得所有$q_i p_i$相伴

  • 可逆元的素因子分解是平凡的,即自身
  • 定理:唯一因子分解换的分解唯一当且仅当p,pabpapb\forall p,p|ab\to p|a\wedge p|b成立

6)最大公因数g.c.d(a,b)g.c.d(a,b)

  • 定义:
    • 因数性:dadbd|a\vee d|b
    • 最大化:c:cacbcd\forall c: c|a\vee c|b\to c|d
  • 显然,相伴元也是最大公因数
  • 运算性质:
    • g.c.d.(a,b)=a    abg.c.d.(a,b)=a\iff a|b
    • g.c.d.(a,0)=ag.c.d.(a,0)=a
    • g.c.d.(ta,tb)=tg.c.d.(a,b)g.c.d.(ta,tb)=t \cdot g.c.d.(a,b)
    • g.c.d.(g.c.d.(a,b),c)=g.c.d.(a,g.c.d.(b,c))g.c.d.(g.c.d.(a,b),c)=g.c.d.(a,g.c.d.(b,c))

7)最小公倍数l.c.m.(a,b)l.c.m.(a,b)

  • 定义:

    • 因数性:ambma|m\vee b|m
    • 最小化:c:acbcdc\forall c: a|c\vee b|c\to d|c
  • l.c.m.(a,b)=0    a=0b=0l.c.m.(a,b)=0\implies a=0\wedge b=0

  • a,b0,ab=dl.c.m(a,b)    d=g.c.d(a.b)a,b\neq0,ab=d\cdot l.c.m(a,b)\implies d = g.c.d(a.b)

8)互素g.c.d.(a,b)=1g.c.d.(a,b)=1

9)整除性判别法:设R为唯一因子分解环,P\mathcal{P}为素元集(使得任意素元相伴其中一个且仅一个元素),分解a,b为a=uΠipiki,b=vΠipilia=u\Pi_ip_i^{k_i},b=v\Pi_ip_i^{l_i}。则ab    i,kilia|b\iff\forall i,k_i\le l_ig.c.d.(a,b)=Πipimin{ki,li},l.c.m.(a,b)=Πipimax{ki,li}g.c.d.(a,b)=\Pi_ip_i^{\min\{k_i,l_i\}},l.c.m.(a,b)=\Pi_ip_i^{\max\{k_i,l_i\}}

10)欧几里得环(欧式环)

  • 定义:满足任意非零元素元素都对应于一个非负整数(δ:R{0}N\delta:R \setminus \{0\}\to \N),且a,b0:δ(ab)δ(a)\forall a,b\neq0:\delta(ab)\ge\delta(a),a,bR,b0,q,rR:a=qb+r,δ(r)<δ(b)r=0\forall a,b\in R,b\neq0,\exist q,r\in R:a=qb+r,\delta(r)\lt\delta(b)\wedge r=0的整环R
  • 特别地,在多项式环中,δ\delta即多项式的次数
  • 求最大公因数可用辗转相除法。g.c.d.(a,b)=g.c.d.(a%b,b)Rg.c.d.(a,b)=g.c.d.(a\%b,b)R
  • 任意两个元素有最大因和最小公倍。
  • u,bR:g.c.d.(a,b)=au+bv\exist u,b\in R:g.c.d.(a,b) = au+bv。特别地g.c.d.(a,b)=1    u,bR:g.c.d.(a,b)=1g.c.d.(a,b)=1\iff \exist u,b\in R:g.c.d.(a,b) = 1
  • 推论:
    • g.c.d.(a,b)=1g.c.d.(a,c)=1g.c.d.(a,bc)=1g.c.d.(a,b)=1\vee g.c.d.(a,c)=1\to g.c.d.(a,bc)=1
    • abcg.c.d.(a,b)=1aca|bc\vee g.c.d.(a,b)=1\to a|c
    • bacag.c.d.(b,c)=1bcab|a\vee c|a\vee g.c.d.(b,c)=1\to bc|a
  • 每一个欧式环都是唯一因子分解环。特别地环Z\Z和任意域上多项式环P[X]P[X]是唯一影子分解环。
  • 多元多项式环不是唯一因子分解环,但是也有唯一因子分解性

11)在任意域上P的多项式环P[X]P[X]中有无限多个首一既约多项式,存在任意高次既约多项式。

12)容度:多项式系数的最大公因数d=d(f)d=d(f)

  • 若容度R上可逆,则称多项式为本原多项式
  • 高斯引理:若R是唯一因子分解环,f,gR[X]f,g\in R[X],则d(fg)d(f)d(g)d(fg)\approx d(f)\cdot d(g)(精确到相伴是相等的)。故本原多项式的乘积依然是本原多项式
  • 推论:若ffZ\Z上既约,则在Q\mathbb{Q}上既约

13)艾森斯坦既约性判别法:若Z\Z上首一多项式f=Xn+a1Xn1++anf=X^n+a_1X^{n-1}+\dots+a_na1,,ana_1,\dots,a_n都能被某个素数pp整除,但ana_n不能被p2p^2整除,则ffQ\mathbb{Q}上既约

注记:若首项不为1但是与pp互素时,依然适用

C3 分式域

1)整环分式域:在环AA上的元素对集合A×A{0}A\times A\setminus\{0\}上定义等价关系:(a,b)(c,d):ad=bc(a,b)\sim(c,d):ad=bc。该等价关系下的商集Q(A)Q(A)称为环A的分式域

  • 加法:(a,b)+(c,d)=(ad+bc,bd)(a,b)+(c,d)=(ad+bc,bd)
  • 乘法:(a,b)(c,d)=(ac,bd)(a,b)(c,d)=(ac,bd)
  • 单位元:(1,1)(1,1);零元:(0,1)(0,1)
  • Q(A)Q(A)中元素(即等价类)为[a,b][a,b],定义相同的运算。
    • 注意到,Q(A)Q(A)上的加法和乘法运算不依赖于等价类中代表元的选取,因为(a,b)(a,b)    {(a,b)+(c,d)(a,b)+(c,d)(a,b)(c,d)(a,b)(c,d)(a,b)\sim(a',b')\implies \begin{cases} (a,b)+(c,d) \sim(a',b')+(c,d) \\ (a,b)(c,d)\sim (a',b')(c,d)\end{cases}
    • Q(A)Q(A)上,加乘运算满足域的定义
  • 称为分式域的原因:[a,b]Q(A):[b,1]x=[a,1]\forall [a,b]\in Q(A):[b,1]x=[a,1],定义单同态f:AQ(A):a[a,1]f:A\to Q(A):a\mapsto[a,1]。可知xx总是分式f(a)/f(b)f(a)/f(b),习惯上,将其记为ab\frac{a}{b}
  • 注意到,当AA是域时,AQ(A)A\cong Q(A)
  • 注记:若AA是域PP的一个子环,且PP中元素都可以写成分式形式a/ba/b,则PQ(A)P\cong Q(A)。如KaTeX parse error: Undefined control sequence: \Q at position 1: \̲Q̲(\sqrt{d})=Q(\Z…

2)有理函数域:多项式环P[X]P[X]的分式域。其中PP是域。记为P(X)P(X)

  • 注意到,char P=char P(X)\mathrm{char}\ P=\mathrm{char}\ P(X)
  • P(X)P(X)中元素fg\frac{f}{g}ff称为分子gg称为分母。若分子分母互素,称既约分式
  • degfg=degfdegg\deg \frac{f}{g}=\deg f-\deg g称为有理函数的次数,不依赖于代表元选择。若次数小于0,称真分式
  • 定理:任意有理函数可唯一表示为一个多项式与一个真分式之和。
  • 注记:所有真分式的集合P0(X)P_0(X)连通P(X)P(X)上的加法和乘法构成一个没有单位元的环

3)最简分式:fgP(X)\frac{f}{g}\in P(X)g=pn,n1,pP[X]g=p^n,n\ge1,p\in P[X]为既约多项式。

  • 定理:每个真分式可以唯一表示为最简分式的和

C4 多项式的根

1):含单位元交换环AA是整环RR子环,使得fA[X],f(c)=0f\in A[X],f(c)=0cRc\in R称方程f(X)=0f(X)=0的根

  • 贝祖(Bezout)定理:cA,fA[X]:f(c)=0    (Xc)fc\in A,f\in A[X]:f(c)=0\iff(X-c)|f

  • 霍纳除法求fXc\frac{f}{X-c}

    • f(X)=a0Xn+a1Xn1++an,aiA,q(x)=b0Xn1+b1Xn2++bn1f(X)=a_0X^n+a_1X^{n-1}+\dots+a_n,a_i\in A,q(x)=b_0X^{n-1}+b_1X^{n-2}+\dots+b_{n-1}

      b0=a0,bk=bk1c+ak,f(c)=bn1c+anb_0=a_0,b_k=b_{k-1}c+a_k,f(c)=b_{n-1}c+a_n

  • k重根(Xc)kf(Xc)k+1f    f(X)=(Xc)kg(X),g(c)0(X-c)^k|f\wedge (X-c)^{k+1}\nmid f\iff f(X)=(X-c)^kg(X),g(c)\neq 0

  • 定理:若AA整环f0,fA[x]f\neq0,f\in A[x]有根c1,c2,,crc_1,c_2,\dots,c_r,重数为k1,k2,,krk_1,k_2,\dots,k_r,则f=(Xc1)k1(Xc2)k2(Xcr)krg(x),g(ci)0f=(X-c_1)^{k_1}(X-c_2)^{k_2}\dots(X-c_r)^{k_r}g(x),g(c_i)\neq 0。且kidegf\sum k_i\le \deg f

  • 推论:若AA是整环,f,gA[X]f,g\in A[X]在互异的c1,c2,cn+1c_1,c_2,\dots c_{n+1}上取值相同,则f=gf=g

2)多项式函数:每个多项式对应于一个函数f~:AA:af(a)\tilde{f}:A\to A:a\mapsto f(a),这些函数的集合构成一个环ApolA_{pol}。称多项式函数环(或整有理函数环)

  • 注记:p元有限域Fp\mathbb{F}_p上多项式的函数等于约化多项式fXpX\frac{f}{X^p-X}的函数,因为g(X)=(XpX)u(X)g(X)=(X^p-X)u(X)始终为0
  • A[X]Apol:ff~A[X]\to A_{pol}:f\mapsto \tilde{f}是一个环同构,这表明,给定f~\tilde f,可以求出原先的ff
  • 拉格朗日插值公式f(ci)=bi,cicj,ijf(c_i)=b_i,c_i\neq c_j,i\neq j,则f(X)=i=0nbiΠk=0,kin(Xck)Πk=0n(cick)f(X)=\sum_{i=0}^n b_i \frac{\Pi_{k=0,k\neq i}^n(X-c_k)}{\Pi_{k=0}^n(c_i-c_k)}
  • 牛顿插值公式f(X)=u0+u1(Xc0)++un(Xc0)(Xcn1),unf(X)=u_0+u_1(X-c_0)+\dots+u_n(X-c_0)\dots(X-c_{n-1}),u_n需要代入各cic_i求解

3)导数:f(X)=na0Xn1+(n1)a1Xn2++an1f'(X)=na_0X^{n-1}+(n-1)a_1X^{n-2}+\dots +a_{n-1}。当P=RP=\Rf(X)=limΔx0f~(x+Δx)f~(x)Δxf'(X)=\lim\limits_{\Delta x\to0}\frac{\tilde{f}(x+\Delta x)-\tilde{f}(x)}{\Delta x}

  • 导子:环RR上满足D(u+v)=D(u)+D(v);D(uv)=(Du)v+u(Dv)D(u+v)=D(u)+D(v);D(uv)=(Du)v+u(Dv)的映射D:RRD:R\to R
  • 莱布尼兹:Dm(uv)=k=0mCmkDkuDmkvD^m(uv)=\sum_{k=0}^mC_m^kD^kuD^{m-k}v
  • 复合求导:Df(X)=f(X)DXDf(X)=f'(X)DX。若DX=1DX=1则得到一般的微分算子D=ddXD=\frac{\mathrm{d}}{\mathrm{d}X}
  • 记m重微分:f(m)f^{(m)}

4)重因式charP=0,fP[X],f(X)=λp1(X)k1pr(X)kr\bold{\mathrm{char} P = 0},f\in P[X],f(X)=\lambda p_1(X)^{k_1}\dots p_r(X)^{k_r},称首一既约多项式pi(X)p_i(X)ffkik_i重因式

  • ff有重根c    f(c)=f(c)=0c\iff f'(c)=f(c)=0

    推论:pn    Xn1p\nmid n\implies X^n-1只有单根。因为nXn1nX^{n-1}的根不可能是Xn1X^n-1的根

  • 引理:特征0的域degf=degf1\deg f'=\deg f - 1,在有限域中不一定成立

  • 定理:p(X)p(X)fP[X]f\in P[X]kk重既约因式,则p(X)p(X)ff'k1k-1重因式,特别地,k=1k=1时,p(X)fp(X)\nmid f'

  • 推论:charP=0\mathrm{char}P=0ff在某扩域FPF\supset P中有kk重根    \ifff(j)(c)=0,0jk1,f(k)(c)0f^{(j)}(c)=0,0\le j\le k-1,f^{(k)}(c)\neq 0

  • 推论:f(X)=λp1(X)k1pr(X)kr,degf1f(X)=\lambda p_1(X)^{k_1}\dots p_r(X)^{k_r},\deg f\ge1,则g.c.d.(f,f)=p1(X)k11pr(X)kr1g.c.d.(f,f')=p_1(X)^{k_1-1}\dots p_r(X)^{k_r-1}

    应用:g(X)=fg.c.d.(f,f)=p1(X)pr(X)g(X)=\frac{f}{g.c.d.(f,f')}=p_1(X)\dots p_r(X)可以通过欧几里得算法求出全部单因式,而不需要知道实际分解

5)韦达公式:若f=Xn+a1Xn1++anf=X^n+a_1X^{n-1}+\dots+a_n有根c1,c2,,cnc_1,c_2,\dots,c_n,则ak=(1)ki1<i2<<ikci1ci2cika_k=(-1)^k\sum\limits_{i_1\lt i_2\lt\dots\lt i_k}c_{i_1}c_{i_2}\dots c_{i_k}

小证:f=(Xc1)(Xc2)(Xcn)=Xn+a1Xn1++anf=(X-c_1)(X-c_2)\dots(X-c_n)=X^n+a_1X^{n-1}+\dots+a_n比较系数

6)对称函数:函数取值与变元次序无关。形式化表述:πSn,πf~=f~(xπ(1),,xπ(n))=f~\forall \pi\in S_n,\widetilde{\pi\circ f}=\tilde{f}(x_{\pi(1)},\dots,x_{\pi(n)})=\tilde{f}

  • 特别的,称sk(x1,x2,,xn)=1i1<i2<<iknxi1xi2xins_k(x_1,x_2,\dots,x_n)=\sum\limits_{1\le i_1\lt i_2\lt\dots\lt i_k\le n}x_{i_1}x_{i_2}\dots x_{i_n}初等对称函数。韦达公式可改写为ak=(1)ksk(c1,,cn)a_k=(-1)^ks_k(c_1,\dots,c_n)

  • 威尔逊定理:(p1)!+10(mod  p)    p is prime(p-1)!+1\equiv0(\mod p)\iff p \ is \ prime

    推导:必要性:有限域Fp\mathbb{F}_pXp1=(X1)(X(p1))X^p-1=(X-1)\dots(X-(p-1))。充分性:p=p1p2    p1(p1)!p=p_1p_2\implies p_1|(p-1)!

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读