这些公理,同其他动机不明的定义一起,让门外汉难以掌握数学。它们主要通过这样的方式协助数学家,从而提升数学的权威性。 ——弗拉基米尔·阿诺尔德
线性代数的一切概念,如行列式和特征向量,它们并不受所选坐标系的影响,但是这两者是暗含于空间中的性质。
从某种意义上来说,函数实际上也只是另一种向量,对于函数来说,也有可加性,可比性。
线性代数 | 函数 |
---|---|
线性变换 | 线性算子 |
点积 | 内积 |
特征向量 | 特征函数 |
相同的概念只是在不同的领域有着不同的名称罢了。
有很多类似向量的不同事物,只要你处理的对象具有合理的数乘和相加的概念,线性代数中所有关于向量,线性变换和其他的概念都应该使用与它。作为数学家,你可能希望你发现的规律不只对一个特殊情况适用,对其他类似向量的事物都有普适性。
- 回到这节一开始提到的问题中来,“向量是什么”,我们可以说有很多类似向量的事物,这些对象拥有合理的数乘和相加的概念那么线性代数中所有关于向量、线性变换和其他概念都应该适用于它。为了使线性代数的定义和定理不只对一个特殊情况适用,对其他类似向量的事物 都具有普适性。所以数学家并没有明确定义向量是什么东西,而是建立一系列向量加法和数乘必须遵守的规则,在线性代数的现代理论中如果要让所有已经建立好的理论和概念适用于一个向量空间&#x