学习目标:
雷达信号的脉内调制识别文献调研
学习内容:
- 雷达会根据其工作模式,改变脉内信号的脉宽和调制方式,需要完成脉内信号的参数测量(载频、脉宽和带宽等),并识别出信号的脉内调制方式;脉内调制方式有无调制,线性调频(LFM),非线性调频(NLFM),频率编码(Coatas),多载波跳频(载波数≤4),多相编码(BPSK、QPSK、Frank、P1-P4、T1-T4),频率编码与多相编码组合,频率编码与线性编码组合,频率编码与非线性编码组合等。
- 当前工程常采用相位差分方法,但抗噪声能力差;可采用时频图+深度学习的方法;至少需要用软件无线电平台(GNURadio开发)完成信号生成与信号截获;若使用深度学习方法,需要在研究室AI加速硬件上完成性能测试。
论文阅读:
[1]高君丰,刘芬芬.基于图像特征的雷达脉内调制类型识别[J].舰船电子工程,2021,41(07):97-101.
- 利用图像处理方法对信号时频图进行预处理,包括图像滤波、图像剪切、图像二值化等,去掉背景噪声等冗余信息,截取出图像中信号所在部分;然后提取出图像的中心矩和伪Zernike矩特征,再利用随机森林构建分类器,识别信号。
时频变换
- 时频分布:魏格纳-维尔分布(WVD)——具有很高的时频聚集性,大多存在严重的交叉项。本文采用平滑伪Wigner-Ville分布(SPWVD)。
图像预处理
- 彩色的时频图——灰度图——拉普拉斯锐化(增强图像的边缘和灰度跳变的细节)——维纳滤波(抑制目标信号和背景中的噪声)——时频图像灰度值归一化——图像剪切——二值化
特征提取
- 提取时频图像的矩函数中的归一化中心矩以及伪Zernike矩。
- 矩函数是一种有效的形状特征描述子,能够提供大量与图像有关的信息,如图像的形状、大小和方向等
仿真实验
- 8种雷达脉内调制信号,分别是常规信号(CW)、线性调频信号(LFM)、非线性调频信号(NLFM)、二相编码信号(BPSK)、四相编码信号(QPSK)、频率编码信号(FSK)以及两种复合信号(FSK+BPSK复合、LFM+BPSK复合)。信号载频为400MHz、采样频率为1000MHz、脉宽10μs。
- 分别利用随机森林、支持向量机(SVM)、K近邻(KNN)三种分类方法对时频特征不明显的相位编码信号进行分类识别。
雷达辐射源脉内特征分析与分类识别. 青娅兰(2021硕士论文)
- 特定辐射源识别(Specific Emitter Identification , SEI)
绪论
- PRI、DOA、TOA、PW 等参数被称为常规脉冲描述字,至今仍被用于一些特定的电磁环境场合。最开始的雷达信号波形单一,调制参数基本