西瓜书的学习:第一章 绪论

第一章 绪论

学习算法 从数据中产生“模型”的算法
机器学习 研究关于学习算法的学问
模型 从数据中学得的结果 (在本书中的定义)
学习器 学习算法的抽象

数据集 D = { x 1 , x 2 , ⋯   , x m } D=\lbrace x_1,x_2, \cdots,x_m\rbrace D={x1,x2,,xm}
样本(示例) x i = ( x i 1 , x i 2 , ⋯   , x i d ) x_i=(x_{i1},x_{i2},\cdots,x_{id}) xi=(xi1,xi2,,xid)
特征(属性)
属性值
特征空间(样本空间) 以属性为轴张成的空间 χ \chi χ d d d维空间
特征向量 即为一个样本,对应 χ \chi χ中的坐标向量
学习(训练) 通过执行学习算法从数据中学得模型

训练集 训练样本的集合
假设 由训练集学得的模型 目标:找出或逼近真相
真相(ground-truth) 潜在规律本身
标记(label)
样例 拥有标记的样本 ( x i , y i ) (x_i,y_i) (xi,yi) y i ∈ Y y_i\in{Y} yiY
标记空间 Y Y Y

  • 分类任务 预测离散值

  • 回归任务 预测连续值 Y = R Y=R Y=R实数集

  • 二分类 → \rightarrow 正类/反类 Y = { 0 , 1 } Y=\lbrace0,1\rbrace Y={0,1} Y = { − 1 , 1 } Y=\lbrace-1,1\rbrace Y={1,1}

  • 多分类 → \rightarrow 建立映射 f : χ → Y f:\chi\rightarrow{Y} f:χY ∣ Y ∣ > 2 |Y|>2 Y>2

测试 使用模型进行预测
测试集 测试样本 x x x 预测标记 y = f ( x ) y=f(x) y=f(x)

聚类 将训练集样本分成若干簇,(训练集不包含标记信息)

  • 监督学习
  • 无监督学习

泛化能力 学得模型适用于新样本的能力

通常假设样本空间中全体样本服从一个未知分布D,我们获得的每个样本都是i.i.d(独立同分布)采样得到的。
一般而言,训练样本越多,得到的关于D的信息越多,越有可能得到泛化能力强的模型。

归纳学习
\quad 广义上:从样例(即带标记的数据)中学习
\quad 狭义上:“概念学习”——从训练数据中学得概念,较困难,研究较少

假设空间 所有假设组成的空间

可将学习过程看作在假设空间进行搜索的过程
搜索目标:找到与训练集匹配的假设
搜索策略:如 自顶向下(一般到特殊),自底向上(特殊到一般)等
搜索过程:不断删除与正例不一致的假设,不断删除和反例一致的假设
搜索结果:与训练集一致的假设(一个假设集合)——版本空间

版本空间 与训练集一致的假设集合
归纳偏好 机器学习算法在学习过程中对某种类型假设的偏好——机器学习算法对假设进行选择的启发式或价值观
(机器学习算法一定具有归纳偏好,因为必须对一个输入产生确定的学习结果)
奥卡姆剃刀 “若有多个假设与观察一致,则选择最简单的那个” ——但“最简单”在很多时候也存在多种解释

算 法 的 归 纳 偏 好 是 否 与 问 题 本 身 匹 配 , 大 多 数 时 候 直 接 决 定 了 算 法 是 否 能 取 得 好 的 性 能 \color{red}{算法的归纳偏好是否与问题本身匹配,大多数时候直接决定了算法是否能取得好的性能}

NFL定理 “没有免费的午餐”
无论学习算法 γ a \gamma_a γa多聪明,学习算法 γ b \gamma_b γb多笨拙,它们的期望性能相同。
(前提:所有“问题”同等重要——但实际中,我们往往只关注当前试图解决的问题)
→ \rightarrow 具体问题具体分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值