文章来源:同济大学,2023 IEEE IoT
Zhao Y, Gong W, Li L, et al. An Efficient and Robust Fingerprint Based Localization Method for Multi Floor Indoor Environment[J]. IEEE Internet of Things Journal, 2023.
摘要
基于指纹的室内定位是各种智能物联网(IIoT)系统中最有前途的解决方案之一。然而,最近的研究表明,当前基于指纹的定位技术的主要设计挑战来自以下三个方面:
1)工业物联网设备运行模式的多样性和无线信号的随机波动导致的时间变化;
2)复杂的多层环境导致采集到的RSSI样本在空间上的不均匀性;
3)采集到的RSSI样本在大范围内的高特征稀疏性。
为了解决这些问题,我们提出了一种多建筑环境下多层室内定位的定位体系结构,并据此提出了一种基于梯度增强神经网络(GrowNet)和长短期记忆(LSTM)网络的基于指纹的定位方法(GrowNetLoc)。在建筑/楼层识别方面,利用梯度集成模型GrowNet提取不均匀RSSI样本与建筑/楼层指标之间的映射关系。在位置估计方面,采用LSTM网络作为一层基础学习器提取RSSI样本的时间特征,并进一步采用梯度增强策略克服样本稀疏性问题,提高位置估计性能。在实际数据集上进行了大量实验,结果表明与现有方法相比,GrowNetLoc具有更好的定位精度和鲁棒性。索引术语:室内体积定位,多层建筑,梯度增强神经网络,Wi-Fi指纹。
1.Introduction
第5代(5G)无线网络的快速发展和智能物联网(IIoT)的空前普及,使得基于位置的服务(LBS)得以大规模部署[1]。智能LBS应用(如推荐服务、应急救援、自动驾驶等)为我们的日常生活带来了非凡的便利[2][3]。在现有的定位方法中,基于指纹的方法不需要额外部署硬件设备,已经成为提供室内LBS的一种有吸引力的方法。然而,尽管基于指纹的室内定位(例如[4]-[6])在小型单层场景下取得了良好的定位性能,但在大规模复杂区域的室内定位在准确性和鲁棒性方面仍面临诸多挑战。
首先,基于指纹的室内定位容易受到时间信号变化的影响[7][8]。从图1可以看出,从不同的无线接入点(Wireless Access point, wap)采集到的RSSI (Received Signal Strength Indicator,接收信号强度指标)值对于每个参考点(reference point, RP)表现出不同的时变特性。例如UJIIndoorLoc数据集[9]中的典型办公楼,在白天,5G终端和物联网设备被广泛操作,电磁辐射强而复杂。因此,所收集的样本具有较大的方差。而在夜间,大多数设备切换到低功耗模式,采集到的RSSI值更加稳定。此外,人群的存在和移动可能会影响RSSI指纹在白天和夜间的动态差异[6]。为了实现细粒度的室内定位和快速响应,捕捉RSSI值与位置之间随时间变化的非线性关系至关重要。
图1。UJIIndoorLoc数据集一天中不同时间的RSSI分布[9],其中白天的RSSI数据方差较大。
图2 UJIIndoorLoc数据集wap检测数量的样本分布图。例如,有1555个指纹记录包含16个检测到的wap的RSSI信息。
图3。面向多建筑环境的多层室内定位系统架构。
图5。提出了层状结构的楼板识别模型。
结论
本文针对采集到的RSSI指纹在室内定位中存在的时间变异、空间不均匀、样本稀疏等问题,提出了一种多楼多层环境下的室内定位方法GrowNetLoc。GrowNetLoc将梯度增强神经网络与基于集成学习的LSTM模型相结合,可以有效表征RSSI指纹与空间位置之间的非线性关系,该模型分为建筑识别、楼层识别和位置估计三个步骤。我们在两个真实的RSSI数据集上比较了GrowNetLoc与许多现有方法的性能。实验结果表明,与现有方法相比,GrowNetLoc具有更高的建筑物/楼层识别精度、定位精度和鲁棒性。因此,GrowNetLoc更适合在大型多层室内环境中进行室内定位。
二级高引引用文献:
(文献汇编:6.23)
Turgut Z, Kakisim A G. An explainable hybrid deep learning architecture for WiFi-based indoor localization in Internet of Things environment[J]. Future Generation Computer Systems, 2024, 151: 196-213.
本研究提出了一种基于wifi的xai深度学习架构,用于预测房间或走廊中的参考点。我们提出了一种基于深度学习的混合方法,该方法使用长短期记忆来捕获信号特征之间的长期依赖关系,并使用卷积神经网络来提取局部空间信号模式。我们的深度学习旨在丰富每个样本的指纹数据,从不同角度捕捉更有意义的特征图。此外,该方法利用粒子滤波和稀疏自编码器对数据进行有效滤波和维度缩放来调节RSS值,并捕获更多的判别模式。为了提供室内定位估计的局部和全局解释,提出的架构包括两种可解释的人工智能技术,即可解释的模型不可知论解释和SHapley加性解释。实验结果表明,该架构在所有数据集上都比基线深度学习方法获得更高的精度值。
图1。xai驱动的混合深度架构,用于室内定位。
图2。提出的室内定位混合深度学习模型的体系结构。
(文献汇编:5.11)
Alitaleshi A, Jazayeriy H, Kazemitabar J. EA-CNN: A smart indoor 3D positioning scheme based on Wi-Fi fingerprinting and deep learning[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105509.(文献汇编:5.11)
提出一种基于卷积神经网络(CNN)框架的室内定位方法。具体地,提出了一种将极限学习机自编码器(ELM-AE)与二维CNN相结合的模型。