自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(56)
  • 收藏
  • 关注

原创 16.5 DarLoc:基于深度学习和数据特征增强的鲁棒室内磁定位

在长达14个月的时间里,研究人员对189名志愿者使用4种不同的移动设备和多种移动速度进行了广泛的实验,以评估DarLoc的性能。由于地磁场的普遍性,基于磁场的室内定位方法受到了广泛的关注,并且不需要额外的基础设施。为了解决这个问题,本文。,提出了新颖的数据增强和特征增强方法来提取速度信息的特征,从而解决了不同移动速度带来的多尺度序列问题;,采用方向不敏感的磁信号提取方法去除序列中的直流分量,以消除不同保持姿态和不同移动设备带来的影响;提出了一种新的基于深度学习和数据特征增强的磁性定位框架(DarLoc)

2024-06-12 15:05:28 317 1

原创 6.30 基于自编码器卷积神经网络的室内定位

提出了一种完全基于卷积神经网络(CNN)和组合自动编码器的方法和训练策略,该编码器可以自动从Wi-Fi指纹样本中提取特征。在这个模型中,我们耦合了一个自动编码器和一个CNN,并同时对它们进行训练。因此,我们保证编码器和CNN同时训练。建议的系统在UJIIndoor Loc和Tampere数据集上进行了评估。

2024-06-12 14:52:14 361

原创 室内定位中文综述阅读

4]柳景斌,赵智博,胡宁松等.室内高精度定位技术总结与展望[J].武汉大学学报(信息科学版),2022,47(07):997-1008.DOI:10.13203/j.whugis20220029.

2024-04-11 22:46:52 990

原创 6.28 Wi-Fi指纹库在大规模多建筑多楼层室内定位中的使用与构建——以UJIIndoorLoc数据库为例

(1) 本文研究背景是室内定位在无线通信和移动设备快速发展的背景下,尤其是基于Wi-Fi指纹的大规模多建筑多楼层室内定位。(2) 过去的研究方法主要基于已有的Wi-Fi指纹数据库进行算法开发和性能评估,但这些数据库在构建和维护方面存在挑战。(3) 本文研究方法是通过对UJIIndoorLoc数据库的案例研究,分析其统计特性,并提出改进现有数据库和构建新数据库的建议。(4) 本文的方法在揭示UJIIndoorLoc数据库存在的问题方面取得了成果,并给出了未来数据库设计的方向。

2024-04-06 12:43:00 778

原创 第3章——深度学习入门(鱼书)

上一章我们学习了感知机。关于感知机,既有好消息,也有坏消息。好消息是,即便对于复杂的函数,感知机也隐含着能够表示它的可能性。上一章已经介绍过,即便是计算机进行的复杂处理,感知机(理论上)也可以将其表示出来。坏消息是,设定权重的工作,即确定合适的、能符合预期的输入与输出的权重,现在还是由人工进行的。上一章中,我们结合与门、或门的真值表人工决定了合适的权重。神经网络的出现就是为了解决刚才的坏消息。具体地讲,神经网络的一个重要性质是它可以自动地从数据中学习到合适的权重参数。

2024-04-06 12:27:36 301

原创 6.8 二级引用高分论文

5.11Alitaleshi A, Jazayeriy H, Kazemitabar J. EA-CNN: A smart indoor 3D positioning scheme based on Wi-Fi fingerprinting and deep learning[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105509.(5.11 EA-CNN:一种基于Wi-Fi指纹和深度学习的智能室内3D定位方案)

2024-03-06 12:28:58 394

原创 19.2 DeepMetricFi:基于深度度量学习改进Wi-Fi指纹定位

Wi-Fi RSSI指纹定位方法以其可靠的定位精度和无处不在的基础设施而成为室内定位的主流解决方案之一。其基本假设是基于无线电波传播模型,通过信号距离来估计室内环境的定位距离。然而,由于室内环境的影响,如多径效应,估计可能会失败。虽然最近的方法利用机器学习技术来提高信号距离的表示,但大多数方法忽略了指纹采集所处的室内环境的空间信息。文中提出了一种基于深度度量学习的Wi-Fi RSSI指纹定位方法。

2024-03-02 22:08:06 1203

原创 基于视觉求精的WiFi序列多决策定位算法

目前,大多数移动设备都有WIFI模块和摄像头模块来定位它们的位置。然而,在大规模、高度相似的室内环境中,存在定位精度和定位时间两个主要挑战。为了平衡这些问题,本文提出了一种结合WIFI和视觉获取用户位置的序贯多决策集成系统。该系统分为顺序融合定位和自适应多决策融合定位两个阶段。前者首先采用基于wifi的定位,然后在wifi定位的约束条件下采用基于图像的定位和融合定位。在基于WIFI的定位阶段,使用高斯过程回归(GPR)模型构建WIFI室内地图。

2024-03-02 21:10:10 399

原创 MapFi:面向室内定位的Wi-Fi基础设施自主地图构建

CSI Wi-Fi 室内定位

2024-03-02 21:05:51 393

原创 15.3 基于深度学习的WiFi指纹低成本地点识别

采用深度神经网络系统进行建筑/楼层分类;证明了堆叠自编码器可以有效地减少特征空间,以实现鲁棒和精确的分类;在公开可用的UJIIndoorLoc数据集上验证了所提出的架构

2024-02-24 18:12:32 1174

原创 叠置去噪自编码器:用局部去噪准则学习深度网络中的有用表示

我们探索了一种构建深度网络的原始策略,该策略基于去噪自编码器的堆叠层,这些自编码器经过局部训练以去噪其输入的损坏版本。由此产生的算法是普通自编码器堆叠的直接变化。然而,在分类问题的基准测试中显示,它产生的分类误差显著降低,从而弥合了与深度信念网络(DBN)的性能差距,并在某些情况下超过了DBN。以这种纯无监督方式学习的更高级别表示也有助于提高后续SVM分类器的性能。定性实验表明,与普通自编码器不同,去噪自编码器能够从自然图像斑块中学习类gabor边缘检测器,从数字图像中学习更大的笔划检测器。

2024-02-23 16:00:46 789

原创 第6章-Python编程:从入门到实践

第章 字典在本章中,你将学习能够将相关信息关联起来的Python字典。你将学习如何访问和修改字典中的信息。鉴于字典可存储的信息量几乎不受限制,因此我们会演示如何遍历字典中的数据。另外,你还将学习存储字典的列表、存储列表的字典和存储字典的字典。理解字典后,你就能够更准确地为各种真实物体建模。你可以创建一个表示人的字典,然后想在其中存储多少信息就存储多少信息:姓名、年龄、地址、职业以及要描述的任何方面。

2024-02-10 11:26:06 919

原创 第15章-Python编程:从入门到实践

以引人注目的简洁方式呈现数据,让观看者能够明白其含义,发现数据集中原本未意识到的规律和意义。,可在用户与图表交互时突出元素以及调整其大小,还可轻松地调整整个图表的尺寸,使其适合在微型智能手表或巨型显示器上显示。,它是一个数学绘图库,我们将使用它来制作简单的图表,如折线图和散点图。数据可视化指的是通过可视化表示来探索数据,它与数据挖掘数紧密相关,而数据挖掘指的是使用代码来探索数据集的规律和关联。绘制一个简单的折线图,再对其进行定制,以实现信息更丰富的数据可视化。单击画廊中的图表,就可查看用于生成图表的代码。

2024-02-08 16:36:23 1017

原创 第6章——深度学习入门(鱼书)

与学习相关的技巧。

2024-02-08 13:20:03 1026

原创 第7章——深度学习入门(鱼书)

卷积神经网络

2024-02-07 01:52:31 922

原创 第4章——深度学习入门(鱼书)

第4章 神经网络的学习

2024-02-07 01:17:41 1187

原创 第5章——深度学习入门(鱼书)

第5章 误差反向传播法

2024-02-07 01:16:02 969

原创 第8章 python深度学习——波斯美女

使用 LSTM 生成文本;实现 DeepDream;实现神经风格迁移;变分自编码器;了解生成式对抗网络

2024-01-31 11:15:24 1220

原创 第7章 python深度学习——波斯美女

Keras 函数式 API;使用 Keras 回调函数;使用 TensorBoard 可视化工具;开发最先进模型的重要最佳实践

2024-01-31 08:42:58 379

原创 第4章 python深度学习——(波斯美女)

本章包括以下内容:除分类和回归之外的机器学习形式评估机器学习模型的规范流程为深度学习准备数据特征工程解决过拟合处理机器学习问题的通用工作流程学完第3 章的三个实例,你应该已经知道如何用神经网络解决分类问题和回归问题,而且也看到了机器学习的核心难题:过拟合。本章会将你对这些问题的直觉固化为解决深度学习问题的可靠的概念框架。我们将把所有这些概念——模型评估、数据预处理、特征工程、解决过拟合——整合为详细的七步工作流程,用来解决任何机器学习任务。

2024-01-28 22:59:53 2271

原创 第3章-python深度学习——(波斯美女)

第3章 神经网络入门本章包括以下内容: 神经网络的核心组件 Keras 简介 建立深度学习工作站 使用神经网络解决基本的分类问题与回归问题本章的目的是让你开始用神经网络来解决实际问题。你将进一步巩固在第 2 章第一个示例中学到的知识,还会将学到的知识应用于三个新问题,这三个问题涵盖神经网络最常见的三种使用场景:二分类问题、多分类问题和标量回归问题。 本章将进一步介绍神经网络的核心组件,即层、网络、目标函数和优化器;还会简要介绍Keras,它是贯穿本书的 Pytho

2024-01-27 17:37:21 1630

原创 第2章-python深度学习——波斯女

本章包括以下内容:第一个神经网络示例;张量与张量运算;神经网络如何通过反向传播与梯度下降进行学习

2024-01-26 22:54:46 1454 2

原创 第5章 python深度学习——波斯美女

我们将深入讲解卷积神经网络的原理,以及它在计算机视觉任务上为什么如此成功。但在 此之前,我们先来看一个简单的卷积神经网络示例,即使用卷积神经网络对 MNIST 数字进行分 类,这个任务我们在第 2 章用密集连接网络做过(当时的测试精度为 97.8%)。虽然本例中的卷 积神经网络很简单,但其精度肯定会超过第 2 章的密集连接网络。下列代码将会展示一个简单的卷积神经网络。它是Conv2D 层和 MaxPooling2D 层的堆叠。很快你就会知道这些层的作用。D)g2D)None重要的是,

2024-01-26 22:14:14 1231

原创 5.2 基于深度学习和先验状态的实时指纹室内定位

在基于指纹的定位方法中,接入点的接收信号强度(received signal strength, RSS)向量在参考点处测量并保存在数据库中。然后,将该数据集用于模式识别算法的训练阶段。几种类型的噪声会影响无线电信道中的信号,RSS值会相应被破坏。这些噪声可以通过RSS样本的平均来缓解。在实时应用中,用户在定位过程的在线阶段急于收集不相关的RSS样本来计算自己的平均值。针对这一问题,本文提出了一种解决方案,即利用离线阶段的RSS样本分布和在线阶段的用户先前状态。在第一步中,提出了一种使用。

2024-01-17 14:34:55 1106

原创 5.1 二级引用高分文献

(6.21)(5.2)(6.23)

2024-01-17 14:11:45 419

原创 16.7 基于递归神经网络的分层多楼多层室内定位

现代城市的生活方式越来越趋向于从户外转向室内。大型购物中心、室内运动场、工厂、仓库等的出现,加速了这一趋势。在这种环境下,室内定位成为必不可少的服务之一,所部署的室内定位系统应具有足够的可扩展性,以覆盖这些室内设施的预期扩展。室内定位最经济和实用的方法之一是Wi-Fi指纹识别,它利用使用移动设备(例如智能手机)的广泛部署的Wi-Fi网络,而无需对现有基础设施进行任何修改。传统的Wi-Fi指纹识别方案依赖于复杂的数据前/后处理和耗时的人工参数调整。本文提出了一种基于循环神经网络(RNN)

2024-01-17 13:57:53 388

原创 16.5 参考文献——深度学习定位

本文提出了用于WiFi指纹室内定位的递归神经网络(rnn)。与传统算法一次定位一个移动用户的位置不同,我们的RNN解决方案旨在定位轨迹,并考虑到轨迹中接收信号强度指标(RSSI)测量之间的相关性。为了提高RSSI时间波动之间的准确性,对输入RSSI数据和顺序输出位置都提出了加权平均滤波器。介绍了不同类型的RNN,包括vanilla RNN、长短期记忆(LSTM)、门控循环单元(GRU)、双向RNN (BiRNN)、双向LSTM (BiLSTM)和双向GRU (BiGRU)的结果。

2024-01-17 13:19:01 1190

原创 第6章 python深度学习—第6章(波斯美女)

将文本数据预处理为有用的数据表示;使用循环神经网络;使用一维卷积神经网络处理序列

2024-01-15 23:35:48 1074

原创 1.30 基于WiFi指纹的室内定位概述

自工业4.0概念提出和“互联网+”时代开始以来,基于位置的服务因其社会和商业价值而备受关注。许多学者试图将机器学习引入到室内指纹定位中,以提高室内定位精度、增强系统鲁棒性、降低成本、提高室内定位方法的性能。对室内定位技术、方法和分类进行了全面概述。此外,详细。

2023-12-25 16:22:58 681

原创 1.1室内3D定位系统与技术综述

本文旨在对室内三维定位的最新技术进行调查和详细的综述

2023-12-02 16:46:55 1531

原创 6.23 (2024)一种基于wifi的室内定位用于物联网环境下的可解释混合深度学习架构

文献来源:室内定位服务是物联网生态系统中必不可少的服务之一。指纹识别是一种基于WiFi接入点接收信号强度指标(Received signal Strength Indicator, RSSI)值与信号映射的方法,近年来受到了很多研究者的关注。然而,由于RSSI随时间的变化、设备的多样性以及室内网络中指纹的相似性等一些困难,指纹识别方法尤其具有挑战性。出于这个原因,机器学习和深度学习方法被用于许多目的,例如估计建筑物、楼层或房间的位置。

2023-11-20 13:12:57 230

原创 16.5 一种高效鲁棒的多层室内环境指纹定位方法

提出了一种多建筑环境下多层室内定位的定位体系结构,并据此提出了一种基于梯度增强神经网络(GrowNet)和长短期记忆(LSTM)网络的基于指纹的定位方法(GrowNetLoc)。

2023-11-20 00:25:49 101

原创 16.4 FT-Loc:一种基于细粒度时间特征的方法室内定位的融合网络

室内定位服务(LBS)对于加强需要精确和高效定位技术的社会和商业活动至关重要。现有的基于深度学习的室内定位方法主要是通过预先定义的全局特征来学习局部判别表征,这增加了学习难度,并且对于变化较小的场景来说效率和鲁棒性都不高。为了解决上述问题,我们提出了一种新的基于细粒度时间特征的定位(FT-Loc)框架,该框架利用多个子信号特征提供准确的位置估计,每个子信号代表一个特定位置的线索。具体而言,该框架以多个局部信号序列为输入,设计了考虑时间相关性的深度网络,分别从相应的位置线索中提取特征。然后,

2023-11-20 00:12:20 55

原创 6.21 PSOSVRPos:利用PSO优化的SVR进行WiFi室内定位

无线保真(WiFi)室内定位引起了众多研究者的关注。它面临着许多挑战,主要问题是定位精度低,这阻碍了它的广泛应用。为了提高精度,我们提出了一种基于粒子群优化(PSO)的支持向量回归(SVR)的WiFi室内定位算法,称为PSOSVRPos。SVR算法通过在高维空间中建立信号特征与空间坐标的映射关系,将定位问题作为回归问题来解决。粒子群算法主要研究支持向量回归模型的全局最优参数估计。定位实验在一个开放数据集(1511个样本,154个特征)上进行。

2023-11-14 16:43:20 180

原创 第3章——深度学习入门(鱼书)

学习笔记第3章神经网络从感知机到神经网络神经网络的例子图 3-1中的网络一共由 3层神经元构成,但实质上只有 2层神经元有权重,因此将其称为“2层网络”。请注意,有的书也会根据构成网络的层数,把图 3-1的网络称为“3层网络”。本书将根据实质上拥有权重的层数(输入层、隐藏层、输出层的总数减去 1后的数量)来表示网络的名称。复习感知机激活函数登场刚才登场的hx)函数会将输入信号的总和转换为输出信号,这种函数一般称为激活函数(activation function)。

2023-11-10 16:15:40 596

原创 16.1 神经惯性定位

文介绍了一种新的惯性定位问题,即从惯性测量单元的测量历史中估计位置。本文提出了一种有效的解决方法,即神经惯性定位(NILoc)。NILoc首先使用神经惯性导航技术[10]将IMU传感器数据转换为速度向量序列,剩下的任务是将速度序列映射到某个位置。在这个剩余的任务中的高不确定性是惯性定位的挑战。例如,一个静止的运动可以在任何地方,一个短的向前运动可以在任何走廊。为了克服这种不确定性,我们的方法采用了基于Transformer的神经结构[27](能够编码复杂的长序列数据),带有时间卷积网络(通过压缩输入序列

2023-11-10 14:59:58 302

原创 第一章:python深度学习——波斯美女

python深度学习(第二版)——【美】费朗索瓦.肖莱

2023-11-09 17:30:57 286

原创 1.21基于Wi-Fi RSSI指纹的机器学习室内定位综述

本文综述了基于机器学习的Wi-Fi RSSI指纹识别方案,包括数据预处理、数据增强、用于室内定位的机器学习预测模型以及机器学习中的后处理,并比较了它们的性能。任何基于机器学习的研究都严重依赖于数据集。因此,我们将本调查的很大一部分用于讨论数据集收集和开源数据集。为了为未来的研究提供良好的方向,我们讨论了基于ml的室内定位系统当前面临的挑战和潜在的解决方案。

2023-11-09 16:52:43 285 1

原创 5.1 WiFiNet:基于WiFi的室内定位使用CNN

在本文中,我们提出了一种新的基于wifi的室内定位系统,该系统利用了卷积神经网络在分类问题上的强大能力。为了实现这一目标,使用了三种不同的方法:一种名为WiFiNet的定制架构,专门为解决这一问题而设计和训练,另一种是使用迁移学习和特征提取的最流行的预训练网络。结果表明,在中型环境(30个位置和113个接入点)中,WiFiNet是一种很好的室内定位方法,因为与最先进的WiFi室内定位算法(如SVM)相比,它减少了平均定位误差(33%)和处理时间。

2023-11-09 10:02:43 562 1

原创 3.18基于接收信号强度的WiFi室内定位补充开放数据集

建立了SODIndoorLoc数据集,可以将其作为UJIIndoorLoc数据集的补充

2023-11-09 09:22:09 262 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除