5.11 (2023)EA-CNN:一种基于Wi-Fi指纹和深度学习的智能室内3D定位方案

文献来源:Alitaleshi A, Jazayeriy H, Kazemitabar J. EA-CNN: A smart indoor 3D positioning scheme based on Wi-Fi fingerprinting and deep learning[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105509.

以下为中文翻译

摘要

在多建筑物/楼层环境下,准确的室内位置信息是建立室内定位服务(LBS)的基础。基于接收信号强度指示( RSSI)的Wi-Fi指纹识别已经成为室内定位用户最实用的技术之一。然而,无线信号因衰落、多径效应和设备异构性引起的波动导致RSSI存在较大差异,给精确定位带来了挑战。提出一种基于卷积神经网络(CNN)框架的室内定位方法。具体地,提出了一种将极限学习机自编码器(extreme learning machine autoencoder, ELM-AE)与二维CNN相结合的模型。ELM-AE通过降低输入维度来提取关键特征,而CNN则通过训练有效地在定位阶段取得显著的性能。为提高定位精度并应对数据不足问题,设计一种在原始指纹图谱上频繁添加噪声数据的数据增强策略。利用每个MAC地址的RSS值这一统计特性对输入噪声进行调整。在Tampere和UJIIndoorLoc两个数据集上对所提系统的性能进行了评估。实验结果表明,EA-CNN在Tampere和UJIIndoorLoc数据集上的平均定位误差分别降低了40.95%和43.74%,取得了比CNN更好的性能。与最新的基于深度学习的方法相比,该方法仅利用25%的训练样本,在Tampere和UJIIndoorLoc数据集上的定位性能最高提高了68.36%和67.56%。与几种最新的深度学习模型相比,EA-CNN在定位和地板估计方面都取得了更高的精度。

1 Introduction

随着物联网(IoT)的日益发展基于位置的服务(LBS)的应用受到了业界和学术界的广泛关注(Uphaus et al., 2021)。由于人们大部分时间都在室内度过,如多层购物中心、医院、博物馆和机场,因此对室内位置服务的需求很高(Basiri等人,2017;Min et al., 2021)。如今,智能手机无处不在,几乎无处不在,这使得室内定位服务的部署更加切实可行。准确的定位在服务质量中起着至关重要的作用。全球定位系统(GPS)广泛用于确定开放/户外地区的位置。然而,缺乏视线(LOS)以及多径衰落和阴影对信号的影响使得利用室内定位受到限制(Sithole和Zlatanova, 2016)。诸如无线保真(Wi-Fi)、蓝牙、射频识别(RFID)、超宽带(UWB)等替代技术已被提出用于室内定位。在这些技术中,Wi-Fi具有成本效益,因此是最受欢迎和可行的技术(Spachos和Plataniotis, 2020;Yao and Hsia, 2018;Dumbgen等人,2019;夏等人,2017)。

基于无线信号的定位方法一般分为几何定位和指纹定位两大类。在基于几何的方法中,根据各种测量参数,包括到达时间(ToA)、飞行时间(ToF)和到达角(AoA)来估计位置。尽管基于几何的方法已经很好地建立起来,但非视线效应、多路径问题以及对专用天线的需求以及精确的同步要求使得它们在实际的室内定位中不太有效。相反,Wi-Fi指纹识别因其无处不在、成本效益高、不需要额外的基础设施而被广泛用于室内定位(Mendoza-Silva等人,2019;刘等人,2020)。

指纹识别技术利用接收到的信号强度指示(RSSI)或通道状态信息(CSI)来预测目标位置(Geok等人,2021)。在基于CSI的定位系统中,利用通信链路上的信息,包括秩指示、预编码器矩阵指示和信道质量指示来确定目标位置(Kim et al., 2021)。然而,基于RSS的定位系统仅利用来自多个MAC地址的收集/接收信号强度(RSS)来确定目标位置。因此,在定位性能方面,CSI由于包含更多的信息,比基于RSSI的方法具有更好的稳定性(Wang, 2020;Sanam and Godrich, 2020)。然而,支持CSI的设备需要先进的网络接口卡,而这些接口卡通常不会嵌入到当前的智能手机中(Tiglao et al., 2021)。由于基于RSSI指纹的方法不需要额外的硬件,因此它们是其他技术中最常用的(Yiu et al., 2017)。

基于Wi-Fi指纹的定位方法一般分为离线阶段和在线阶段(Khalajmehrabadi et al., 2017)。在最广泛使用的实现中,每个指纹样本由来自可观察媒体访问控制地址(MAC地址)的接收RSS向量组成。在离线阶段,通过在目标区域采集RSS指纹,采用现场调查、众包等方式建立指纹数据集(即无线地图,radio map)。每个指纹都有一个标签,这是它所属的参考点(RP)的坐标。这样,无线电地图就可以用于模型训练或模式匹配。在在线阶段,设计的定位模型基于实时RSS指纹来确定用户的位置。

基于Wi-Fi指纹识别的技术面临的一个关键挑战是,如何在缺乏学习样本、信号波动、设备异构造成的噪声以及复杂的多建筑/楼层环境中的多路径效应下获得高精度和低成本的定位(Zhu等人,2020;Raitoharju et al., 2020)。此外,大规模环境下的无线电地图涉及大量的MAC地址/特征,特征提取可以有效地提高定位精度。利用自编码器提取特征和降维是管理大量特征的常用技术之一。随着深度学习模型的兴起,深度神经网络(DNN)与传统的堆叠式自编码器相结合,已被广泛部署为大规模场景的定位系统(Jagannath et al., 2022)。利用反向传播过程对传统的堆叠式自编码器进行训练,以优化模型参数。基于反向传播的优化训练存在收敛慢、耗时和局部极小等问题。然而,传统自编码器的训练在计算上昂贵且耗时,特别是对于大规模数据(Katuwal和Suganthan, 2019a)。

文中提出了一种随机权重神经网络(NNRW)来克服传统人工神经网络的缺点(Suganthan和Katuwal, 2021)。在这些网络中,输入层和隐藏层之间的权值在给定范围内随机调整,并在训练过程中保持不变,而隐藏层和输出层之间的权值是解析计算的。与传统学习方法相比,NNRW通过更快的训练速度可以达到可接受的准确率(Zhang and Suganthan, 2016)。随机向量功能链接网络(RVFL)是20世纪90年代Pao和Takefuji(1992)提出的一种NNRW类型。RVFL是一种前馈网络,具有单个隐藏层,输入和输出层之间有直接链接。与RVFL同时,Schmidt提出了另一种具有随机权值的单层前馈神经网络(SLFN),与RVFL不同,SLFN的输入层和输出层之间没有直接联系。在Schmidt网络中,使用Fisher方法确定输出权值(Schmidt et al., 1992)。极限学习机(ELM)是2004年提出的最具吸引力的理论之一。与RVFL和Schmidt不同,ELM可以被视为RVFL的变体,没有从输入到输出层的直接链接和输出层中的偏置项(Cao et al., 2017)。

然而,训练样本不足会降低基于DNN方法的定位效率。另一方面,虽然增加全连接层的数量可以提高定位精度,但这会导致计算复杂度的增加

为了解决上述问题,本文提出了一种新的基于深度学习的框架,该框架基于NNRW(随机权重NN)的自编码器卷积神经网络(CNN)组成,用于Wi-Fi指纹定位。与现有的室内定位方法相比,本文的主要贡献如下:

  1. 为了在复杂的多建筑/楼层环境中定位目标,本文提出了一种创新的深度学习方法。分别针对楼层定位和2D定位提出了两种分类回归模型。
  2. 提出的EA-CNN模型利用极限学习机自编码器降低输入数据的维数来。ELM-AE与CNN的结合,绕过了传统SAE的计算复杂度,显著提高了定位精度。
  3. 针对训练数据不足的问题,本文提出了一种数据增强策略,通过在模型中引入噪声来提高定位性能的鲁棒性。
  4. EA-CNN在两个可用的Tampere和UJIIndoorLoc数据集上进行了评估(Lohan等,2017;Torres-Sospedra et al., 2014)。

实验结果表明,该模型在楼面预测和二维坐标定位两方面均优于现有方法。

本文的其余部分组织如下。相关工作将在第2节中进行回顾。第3节介绍了提出的定位系统的架构,包括系统的总体概述和系统各部分的描述。第4节描述了如何通过对两个数据集的验证集进行实验来优化模型,并将其与其他基于指纹的定位算法的性能进行比较。第5节总结了这项工作,并讨论了未来的工作。

2 Related work

2.1.使用具有随机权值的神经网络的深度体系结构

近年来,人们提出了几种基于随机化自编码器的深度结构。

Kasun等人(2013)提出了一种使用基于随机化的L2正则化自编码器的多层ELM。通过在基于分类层的ELM之前包含多个自编码器层,该模型在MNIST数据集上获得了比基于自编码器的深度网络和深度信念网络(DBN)更好的性能。

Tang等人(2015)利用多层稀疏ELM自编码器构造了层次极限学习机(HELM)。在这些模型中,最后一层权值通过封闭形式解获得,并使用快速迭代收缩阈值算法(FISTA)获得基于自编码器的L1正则化的输出,该正则化用于生成更稀疏且有意义的隐藏特征(Beck and Teboulle, 2009)。

Katuwal和Suganthan (2019b)提出了几种利用RVFL框架和基于随机化的自编码器的深度RVFL结构。作者对HELM框架进行了扩展,加入了用于网络不同部分特征重用的直接链接,从而提高了基于深度网络的分类性能,而不是基于ELM和浅RVFL网络。

Shi等人(2021)提出了集成学习与深度学习相结合的集成RVFL网络。

Nayak等人(2020)的作者提出了一种基于堆叠随机向量功能链接的自编码器(SRVFL-AE)的深度架构,用于多类大脑异常检测,其中直接链接仅在分类层中使用。直接链接仅用于分类层,而不使用基于RVFL的自编码器。

Zhang和Suganthan(2017)提出了一种卷积随机向量功能链接(CRVFL)神经网络来解决视觉跟踪问题。在训练过程中,只需要学习CRVFL的全连接参数,卷积滤波器随机初始化并保持不变。

Zeng et al.(2015)提出了一种使用ELM和CNN的混合深度架构来识别交通标志。训练CNN进行特征提取,并在CNN学习到的特征上部署ELM作为分类器。

Pang和Yang(2016)以及Ali等人(2020)也提出了类似的结构用于手写数字分类。

2.2.基于Wi-Fi指纹的定位使用深度学习

最近,许多基于机器学习和模式匹配的方法被提出用于Wi-Fi指纹定位(Singh等人,2021)。Brunato和Battiti(2005)提出了基于神经网络的指纹定位方法。Dai等人(2016)的作者提出了一种多层前馈神经网络。由于上述方法的训练阶段比较耗时,为了在提高定位性能的同时提高训练速度,采用了具有单前馈层的极限学习机(Lu et al., 2016)。虽然简单易实现,但无法从嘈杂的Wi-Fi信号中提取有用信息并处理信号衰减,导致在大规模建筑物中精度有限。

近年来,基于深度学习的神经网络被成功应用于室内定位系统,以改善大规模环境下基于指纹的定位性能。他们可以通过多层特征提取有效地探索关键特征并获得最优权重(Feng et al., 2021;Alhomayani和Mahoor, 2020年)。Nowicki和Wietrzykowski(2017)提出了一种基于深度神经网络(DNN)的楼层和建筑物分类模型,以解决Wi-Fi指纹定位中耗时耗力的问题。Kim等人(2018)提出了可扩展的DNN,用于在多标签分类任务中估计建筑物、楼层和楼层坐标。然而,在包含大量RPs的大规模环境中,分类器的计算复杂度会增加。Jang和Hong(2018)提出了一种基于CNN的Wi-Fi指纹方法,通过超越基于DNN的技术来对楼层和建筑物进行分类。

为了预测楼层,Alitaleshi等人(2020)部署了ELM的深层结构。作者利用一个两层的稀疏ELM自编码器来提取主要特征,并将其导入到基于ELM的分类模型中。Alitaleshi等人(2022)的作者使用聚类对重叠位置进行分组。然后,他们使用双标签HELM来预测多层建筑中的簇/面积和楼层。在Ezzati Khatab等人(2021)中,未标记数据被用于提高deep-ELM在单层环境中的定位性能。

Sinha和Hwang(2019)提出了一种使用CNN的定位模型,仅对单个楼层上的74个参考点进行分类。他们的模型包含6层(4个卷积层和2个超过1000个节点的全连接层),其性能可以超过对比的CNN应用模型,如AlexNet, ResNet, ZFNet, Inception v3和MobileNet v2。Qin et al.(2021)的作者使用了一种结合卷积降噪自编码器和卷积神经(CDAE)网络的定位系统。CDAE用于RSSI数据去噪和提取关键特征。CNNLOC (Song et al., 2019)被提出通过结合SAE和一维CNN来分层估计建筑物、楼层和坐标。Oh等人(2021)定义了一种与建筑物边界相关的新定义约束,以提高CNNLOC回归模型的精度。

然而,根据建筑物的数量,已经训练了一些模型来预测目标建筑物。然后,根据候选回归模型确定目标位置。Laska和Blankenbach(2021)提出了DeepLocBox,用于使用Wi-Fi指纹计算多建筑物/楼层环境中的目标区域。作者使用DNN和CNN来预测包含用户位置的边界框。Cha和Lim(2022)提出了一种包含多任务学习的分层辅助深度神经网络( HADNN)。通过HADNN优化每个损失的总和来估计建筑物、楼层和位置坐标。仿真结果表明,与单纯的二维回归模型相比,HADNN通过设置更少的参数达到了更好的精度。Ahmed Elesawi和Kim(2021)提出了基于循环神经网络(RNN)的定位,从分类任务的角度依次估计目标位置,从建筑物到坐标。

上述方法要么在大规模环境中没有显著的准确性,要么在计算上很昂贵。传统的叠加式自编码器通过提取有意义的特征来提高模型的精度。然而,反向传播过程耗时且计算复杂。为了同时利用NNRW作为自编码器和CNN在分层特征映射学习方面的优势,本研究首次将CNN与基于直接极限学习机的自编码器(ELM-AE)相结合,利用Wi-Fi指纹技术提高CNN的室内3D定位精度。此外,本文还采用了增强策略来解决数据不足的问题,提高了多楼多层环境下的定位精度。

3 System overview

本节介绍了所提出的定位系统的总体架构。然后,对系统的各个部分分别进行了描述。图1显示了提出的系统概述。系统分为离线学习阶段和在线定位阶段。

在离线阶段,从训练参考点采集Wi-Fi指纹,建立离线无线地图。然后,进行数据处理阶段,包括数据扩充和数据缩放。然后,采用聚类算法将无线电地图划分为两个训练集和验证集。经过训练和优化,得到的EA-CNN将用于实时定位。在线阶段,将用户设备采集到的预处理后的RSSI矢量输入EA-CNN进行目标位置的预测。

3.1.数据预处理

本节描述如何为所提出模型的训练准备数据。首先提出了一种用于数据增强的策略,该策略除了处理训练数据短缺问题外,还可以考虑由RSS量的环境变化引起的噪声。然后,对数据伸缩的描述进行了描述。

3.1.1.数据增强

3.1.2 数据缩放

3.2. 从训练集中提取验证集

3.3. 位置估计模型

3.3.1. 输入特征映射和使用ELM-AE降维

3.3.2. 用CNN算法定位

4. Evaluation

4.1. 数据集描述

4.2. 实验评价

4.2.1. 楼层估计的EA-CNN模型优化

A. 卷积层和ELM-AE参数调整

表4 在Tampere和UJIIndoorLoc两个数据集上验证不同过滤器参数下的地板分类性能。

B.数据增强,应用Dropout和优化器设置

4.2.2. 二维定位EA-CNN模型优化

5. Conclusions

本文提出了一种基于ELM自编码器和CNN的Wi-Fi指纹定位系统。ELM-AE可以对RSSI数据进行特征约简和提取,有效提高了CNN的定位精度。为了解决数据不足的问题,提高模型的鲁棒性和定位性能,本文采用了增强策略。在Tampere和UJIIndoorLoc两个数据集上对EA-CNN的性能进行了评估。

实验结果表明,在UJIIndoorLoc和Tampere上,基于EA-CNN分类的模型预测地板的准确率分别比对比方法高96.31%和95.30%。此外,基于EA-CNN回归的模型在多楼多层环境下的平均定位误差(UJIIndoorLoc和Tampere的平均定位误差分别为8.34米和7.96米)优于CNN和最先进的方法。

在未来的工作中,我们打算通过增加新的约束并考虑到楼层的同时估计来改变回归模型中的成本函数,从而评估所提出模型的性能。这可以通过定义新的约束来部署,以惩罚不正确的楼层估计和实验区域的无维估计。我们也有兴趣在我们的建模中包括其他类型的NNRW。此外,我们将研究Wi-Fi与其他信号(如磁场和蓝牙)的融合,以创建多通道图像,以供所提出的模型学习。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: MATLAB可以用于实现可见光室内定位模型。首先,需要收集房间内的可见光信号数据。可以使用摄像头或者光强传感器等设备来获取房间中各个位置的光照强度数据。收集到的数据可以存储为矩阵,矩阵的行数表示采集的位置数量,列数表示采集的时间步数。 在数据预处理阶段,可以使用MATLAB对数据进行去噪、滤波和归一化等处理,以减小数据的噪声和提高数据的可靠性。 接下来,可以使用机器学习方法进行训练和建模。对于可见光室内定位,可以选择回归或分类算法进行建模。回归模型可以通过输入特征(例如光照强度数据)来预测目标变量(例如位置坐标)。分类模型则可以将光照数据分为不同的类别,每个类别代表一个位置。 在训练模型之前,需要选取合适的特征和标签,以及划分训练集和测试集。常用的特征选择方法包括主成分分析(PCA)和互信息(Mutual Information)等。 训练完成后,可以使用测试集来评估模型的性能。常用的评价指标包括均方根误差(RMSE)和准确率等。 最后,可以使用训练好的模型进行室内定位。给定一个新的光照强度数据,可以通过模型来预测其对应的位置坐标或分类类别。 总之,MATLAB可以用于实现可见光室内定位模型,包括数据预处理、特征选择、模型训练和评估等步骤。 ### 回答2: Matlab可以用于实现可见光室内定位模型。通过光传播和接收的原理,我们可以建立一个数学模型来估计接收器的位置。 首先,我们需要收集一定数量的位置和对应的光强数据。可以利用摄像机和光传感器来测量不同位置的光强。这些数据可以用来训练机器学习算法,以建立位置和光强之间的关系模型。 然后,我们可以使用回归分析方法,如多元线性回归或支持向量回归,来建立位置和光强之间的映射函数。这些回归模型可以将光强作为输入,预测接收器的位置。 在模型构建完成后,我们可以使用实时采集的光强数据,通过输入光强数据到模型,预测用户的位置。该模型在实时位置检测中可以提供准确的定位结果。 为了提高模型的准确性,还可以考虑其他因素,如光源的位置和强度、障碍物对光传播的干扰、接收器的方向等。通过考虑这些因素,我们可以建立更加精确的可见光室内定位模型。 总的来说,利用Matlab,我们可以使用光强数据和位置信息建立一个可见光室内定位模型。这个模型可以实时地通过光强预测接收器的位置,为室内定位提供准确的结果。 ### 回答3: Matlab可以用于实现可见光室内定位模型。在室内定位中,可见光通信(VLC)技术是一种利用可见光进行定位的技术,它可以通过接收物体反射或散射的可见光信号来确定物体的位置。 使用Matlab进行可见光室内定位模型的实现,首先需要收集室内环境中的可见光信号数据。可以使用摄像头或其他传感器来采集室内环境中的可见光信号。通过收集多个位置的可见光信号数据,可以建立一个训练数据集。 接下来,可以使用机器学习算法,如支持向量机(SVM)或人工神经网络(ANN)等,来构建可见光室内定位模型。通过将已知位置的可见光信号数据作为输入,对应的物体位置作为输出,可以训练模型来准确预测不同位置的可见光信号。 在训练完成后,可以使用该模型来对未知位置的可见光信号进行定位。通过将新的可见光信号输入模型,可以得到预测的物体位置。 最后,可以使用Matlab的绘图和可视化功能来展示定位结果。可以将预测的物体位置在室内平面图上标注出来,以便进行实时定位和导航。 总之,Matlab提供了强大的信号处理和机器学习功能,使其成为实现可见光室内定位模型的理想工具。通过收集和分析可见光信号数据,构建定位模型,并对未知位置的信号进行预测,可以实现精确的室内定位。同时,Matlab的可视化功能可以帮助我们更好地理解和展示定位结果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值