对于一个刚体而言,转动惯量是对物体旋转运动抵抗改变能力的一种度量。对于飞轮这样的圆形对称物体来说,其转动惯量取决于质量和半径分布。
假设有一个质量为 m m m、半径为 r r r的薄圆盘形飞轮绕其中心轴线旋转,那么这个飞轮的转动惯量 I I I可以通过积分计算得出:
I = ∫ r 2 d m I = \int r^2 dm I=∫r2dm
这里 r r r是从质元到转轴的距离,而 d m dm dm表示微小的质量元素。为了简化问题,如果认为飞轮是一个均匀厚度的实心圆柱体,可以进一步具体化此公式。设圆柱体的面密度 σ = m π R 2 \sigma=\frac{m}{\pi R^2} σ=πR2m保持不变,其中 R R R是圆柱底面的半径,则有:
d m = σ d A = σ ( 2 π r d r ) dm = \sigma dA = \sigma (2\pi rdr) dm=σdA=σ(2πrdr)
将上面的关系代入转动惯量的定义式中得到:
I = ∫ 0 R r 2 ( 2 π r σ d r ) = 2 π σ ∫ 0 R r 3 d r = 2 π ( m π R 2 ) [ 1 4 R 4 ] = 1 2 m R 2 I = \int_{0}^{R}r^2(2\pi r\sigma dr)=2\pi\sigma\int_{0}^{R}r^3dr=2\pi(\frac{m}{\pi R^2})[\frac{1}{4}R^4]=\frac{1}{2}mR^2 I=∫0Rr2(2πrσdr)=2πσ∫0Rr3dr=2π(πR2m)[41R4]=21mR2
因此,对于一个均匀的固体圆盘或者圆柱形状的飞轮,其相对于中心轴的转动惯量可以用简单的公式表达出来:
I = 1 2 m R 2 I = \frac{1}{2} m R^2 I=21mR2
当涉及到非标准几何形状或是不规则分布的质量时,可能需要更复杂的积分过程或者是数值方法来进行精确计算。此外,在一些情况下还可以采用实验的方法来测定特定对象的实际转动惯量。