转动惯量理解

转动惯量到底是什么

来自知乎Franklin Zeng的回答
在这里插入图片描述
在这里插入图片描述
我们把上面竹蜻蜓换成第一幅图中的那个飞轮,如果那个飞轮的质量分布分布是均匀的(飞轮各处的密度一样),而且金属杆垂直于飞轮面,我们用手搓着让它转动,此时飞轮不会发生左右晃动,只会以金属杆所在直线为轴转动。把飞轮抽象为一个平面,此时转动惯量可以用 J = ∑ m i r i 2 J=\sum m_ir_i^2 J=miri2来表示。如果我们以飞轮的平面为xy平面,金属杆是Z轴,来建立XYZ坐标系,那么此时惯性张量中的惯性积全部为0,只有惯性矩 I Z Z 、 I X X 、 I Y Y I_{ZZ}、I_{XX}、I_{YY} IZZIXXIYY这三个量。如果这个这个杆是斜的,此时惯性积将不为,此时转动飞轮的话,会在其他轴方向产生加速度,从而会左右晃动。
从而说明,惯性张量会随着坐标系的选取而发生变化。
惯性张量的一些性质:
1、如果坐标系的两个坐标轴构成的平面为刚体质量分布的对称平面,则垂直于这个对称平面的坐标轴与另一个坐标轴的惯性积为0;(类似于第一种情况:金属杆和飞轮圆面垂直时的情况)
2、惯性矩永远为正值。
3、当惯性积全部为0时,此时坐标系的轴被称为主轴,相应的惯性矩被称为主惯性矩。
4、惯性张量的特征值为刚体的主惯性矩,相应的特征矢量为主轴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值