来自知乎Franklin Zeng的回答
我们把上面竹蜻蜓换成第一幅图中的那个飞轮,如果那个飞轮的质量分布分布是均匀的(飞轮各处的密度一样),而且金属杆垂直于飞轮面,我们用手搓着让它转动,此时飞轮不会发生左右晃动,只会以金属杆所在直线为轴转动。把飞轮抽象为一个平面,此时转动惯量可以用
J
=
∑
m
i
r
i
2
J=\sum m_ir_i^2
J=∑miri2来表示。如果我们以飞轮的平面为xy平面,金属杆是Z轴,来建立XYZ坐标系,那么此时惯性张量中的惯性积全部为0,只有惯性矩
I
Z
Z
、
I
X
X
、
I
Y
Y
I_{ZZ}、I_{XX}、I_{YY}
IZZ、IXX、IYY这三个量。如果这个这个杆是斜的,此时惯性积将不为,此时转动飞轮的话,会在其他轴方向产生加速度,从而会左右晃动。
从而说明,惯性张量会随着坐标系的选取而发生变化。
惯性张量的一些性质:
1、如果坐标系的两个坐标轴构成的平面为刚体质量分布的对称平面,则垂直于这个对称平面的坐标轴与另一个坐标轴的惯性积为0;(类似于第一种情况:金属杆和飞轮圆面垂直时的情况)
2、惯性矩永远为正值。
3、当惯性积全部为0时,此时坐标系的轴被称为主轴,相应的惯性矩被称为主惯性矩。
4、惯性张量的特征值为刚体的主惯性矩,相应的特征矢量为主轴。
转动惯量理解
最新推荐文章于 2023-12-16 12:43:13 发布