单边拉斯变换与双边拉斯变换性质对比
1. 定义与适用范围
性质 | 单边拉斯变换 | 双边拉斯变换 |
---|---|---|
定义域 | t ≥ 0 t \geq 0 t≥0(仅处理因果信号) | t ∈ R t \in \mathbb{R} t∈R(处理全时域信号,包括非因果信号) |
积分区间 | ∫ 0 ∞ f ( t ) e − s t d t \int_{0}^{\infty} f(t) e^{-st} dt ∫0∞f(t)e−stdt | ∫ − ∞ ∞ f ( t ) e − s t d t \int_{-\infty}^{\infty} f(t) e^{-st} dt ∫−∞∞f(t)e−stdt |
收敛域 | 通常为 Re ( s ) > σ \text{Re}(s) > \sigma Re(s)>σ | 通常为垂直带区域 σ 1 < Re ( s ) < σ 2 \sigma_1 < \text{Re}(s) < \sigma_2 σ1<Re(s)<σ2 |
2. 核心性质对比
性质 | 单边拉斯变换 | 双边拉斯变换 |
---|---|---|
线性性 | L { a f ( t ) + b g ( t ) } = a F ( s ) + b G ( s ) \mathcal{L}\{a f(t) + b g(t)\} = a F(s) + b G(s) L{af(t)+bg(t)}=aF(s)+bG(s) | L { a f ( t ) + b g ( t ) } = a F ( s ) + b G ( s ) \mathcal{L}\{a f(t) + b g(t)\} = a F(s) + b G(s) L{af(t)+bg(t)}=aF(s)+bG(s) |
时移 | L { f ( t − a ) u ( t − a ) } = e − a s F ( s ) ( a ≥ 0 ) \mathcal{L}\{f(t-a) u(t-a)\} = e^{-as} F(s) \quad (a \geq 0) L{f(t−a)u(t−a)}=e−asF(s)(a≥0) | L { f ( t − a ) } = e − a s F ( s ) \mathcal{L}\{f(t-a)\} = e^{-as} F(s) L{f(t−a)}=e−asF(s),需结合 u ( t − a ) u(t-a) u(t−a) 截断负时间部分 |
频移 | L { f ( t ) e a t } = F ( s − a ) \mathcal{L}\{f(t) e^{at}\} = F(s-a) L{f(t)eat}=F(s−a) | L { f ( t ) e a t } = F ( s − a ) \mathcal{L}\{f(t) e^{at}\} = F(s-a) L{f(t)eat}=F(s−a) |
卷积定理 | 时域卷积(因果)对应频域乘积 L { f ∗ g } = F ( s ) G ( s ) \mathcal{L}\{f * g\} = F(s) G(s) L{f∗g}=F(s)G(s) | 完全卷积对应频域乘积 L { f ∗ g } = F ( s ) G ( s ) \mathcal{L}\{f * g\} = F(s) G(s) L{f∗g}=F(s)G(s) |
微分性质 | L { f ′ ( t ) } = s F ( s ) − f ( 0 + ) \mathcal{L}\{f'(t)\} = s F(s) - f(0^+) L{f′(t)}=sF(s)−f(0+)(含初始值项) | L { f ′ ( t ) } = s F ( s ) \mathcal{L}\{f'(t)\} = s F(s) L{f′(t)}=sF(s)(无初始值项,因积分对称) |
积分性质 | L { ∫ 0 t f ( τ ) d τ } = 1 s F ( s ) \mathcal{L}\{\int_0^t f(\tau) d\tau\} = \frac{1}{s} F(s) L{∫0tf(τ)dτ}=s1F(s) | L { ∫ − ∞ t f ( τ ) d τ } = 1 s F ( s ) + C \mathcal{L}\{\int_{-\infty}^t f(\tau) d\tau\} = \frac{1}{s} F(s) + C L{∫−∞tf(τ)dτ}=s1F(s)+C(含积分常数) |
时域乘法 | m a t h c a l L { t f ( t ) } = − d F ( s ) d s mathcal{L}\{t f(t)\} = -\frac{dF(s)}{ds} mathcalL{tf(t)}=−dsdF(s) | L { t f ( t ) } = − d F ( s ) d s \mathcal{L}\{t f(t)\} = -\frac{dF(s)}{ds} L{tf(t)}=−dsdF(s) |
初始值定理 | lim s → ∞ s F ( s ) = f ( 0 + ) \lim_{s \to \infty} s F(s) = f(0^+) lims→∞sF(s)=f(0+) | 无(因考虑全时域,无法直接提取初始值) |
终值定理 | lim s → 0 + s F ( s ) = f ( ∞ ) \lim_{s \to 0^+} s F(s) = f(\infty) lims→0+sF(s)=f(∞)(若存在) | 通常无效(因信号可能在 t → ± ∞ t \to \pm\infty t→±∞ 无界) |
3. 关键差异总结
-
收敛域:
• 单边变换只需 Re ( s ) > σ \text{Re}(s) > \sigma Re(s)>σ,简化了收敛性分析。
• 双边变换需同时保证正负无穷积分收敛,收敛域常为带状区域。 -
初始条件:
• 单边变换通过 s F ( s ) − f ( 0 + ) sF(s) - f(0^+) sF(s)−f(0+) 显式处理初始值。
• 双边变换因积分对称性,初始值隐含在全时域积分中。 -
非因果信号:
• 单边变换无法表示负时间部分的信号。
• 双边变换必须用于分析含负时间成分的信号(如周期信号)。 -
工程应用:
• 单边变换:电路分析、控制系统(默认因果性)。
• 双边变换:信号处理、理论分析(需额外处理收敛性)。
4. 示例验证
• 信号 ( f(t) = u(t) ):
• 单边变换:
L
{
u
(
t
)
}
=
1
s
(
Re
(
s
)
>
0
)
\mathcal{L}\{u(t)\} = \frac{1}{s} \, (\text{Re}(s) > 0)
L{u(t)}=s1(Re(s)>0)。
• 双边变换:
L
{
u
(
t
)
}
=
1
s
(
Re
(
s
)
>
0
)
\mathcal{L}\{u(t)\} = \frac{1}{s} \, (\text{Re}(s) > 0)
L{u(t)}=s1(Re(s)>0),但仅适用于
t
≥
0
t \geq 0
t≥0。
• 非因果信号 ( f(t) = u(-t) ):
• 单边变换:
L
{
u
(
−
t
)
}
=
0
\mathcal{L}\{u(-t)\} = 0
L{u(−t)}=0(因
t
≥
0
t \geq 0
t≥0 时
u
(
−
t
)
=
0
u(-t) = 0
u(−t)=0)。
• 双边变换:
L
{
u
(
−
t
)
}
=
−
1
s
(
Re
(
s
)
<
0
)
\mathcal{L}\{u(-t)\} = -\frac{1}{s} \, (\text{Re}(s) < 0)
L{u(−t)}=−s1(Re(s)<0)。
5. 选择依据
• 单边变换:适用于实际工程问题(如电路、控制系统),默认信号因果。
• 双边变换:适用于理论分析(如信号频谱、全时域响应),需注意收敛域限制。
通过上述对比可知,两种变换的核心思想一致,但因定义域差异导致性质和应用场景不同。正确选择变换方法可显著简化问题分析与求解。