单边拉斯变换与双边拉斯变换性质对比

单边拉斯变换与双边拉斯变换性质对比

1. 定义与适用范围
性质单边拉斯变换双边拉斯变换
定义域 t ≥ 0 t \geq 0 t0(仅处理因果信号) t ∈ R t \in \mathbb{R} tR(处理全时域信号,包括非因果信号)
积分区间 ∫ 0 ∞ f ( t ) e − s t d t \int_{0}^{\infty} f(t) e^{-st} dt 0f(t)estdt ∫ − ∞ ∞ f ( t ) e − s t d t \int_{-\infty}^{\infty} f(t) e^{-st} dt f(t)estdt
收敛域通常为 Re ( s ) > σ \text{Re}(s) > \sigma Re(s)>σ通常为垂直带区域 σ 1 < Re ( s ) < σ 2 \sigma_1 < \text{Re}(s) < \sigma_2 σ1<Re(s)<σ2

2. 核心性质对比
性质单边拉斯变换双边拉斯变换
线性性 L { a f ( t ) + b g ( t ) } = a F ( s ) + b G ( s ) \mathcal{L}\{a f(t) + b g(t)\} = a F(s) + b G(s) L{af(t)+bg(t)}=aF(s)+bG(s) L { a f ( t ) + b g ( t ) } = a F ( s ) + b G ( s ) \mathcal{L}\{a f(t) + b g(t)\} = a F(s) + b G(s) L{af(t)+bg(t)}=aF(s)+bG(s)
时移 L { f ( t − a ) u ( t − a ) } = e − a s F ( s ) ( a ≥ 0 ) \mathcal{L}\{f(t-a) u(t-a)\} = e^{-as} F(s) \quad (a \geq 0) L{f(ta)u(ta)}=easF(s)(a0) L { f ( t − a ) } = e − a s F ( s ) \mathcal{L}\{f(t-a)\} = e^{-as} F(s) L{f(ta)}=easF(s),需结合 u ( t − a ) u(t-a) u(ta) 截断负时间部分
频移 L { f ( t ) e a t } = F ( s − a ) \mathcal{L}\{f(t) e^{at}\} = F(s-a) L{f(t)eat}=F(sa) L { f ( t ) e a t } = F ( s − a ) \mathcal{L}\{f(t) e^{at}\} = F(s-a) L{f(t)eat}=F(sa)
卷积定理时域卷积(因果)对应频域乘积 L { f ∗ g } = F ( s ) G ( s ) \mathcal{L}\{f * g\} = F(s) G(s) L{fg}=F(s)G(s)完全卷积对应频域乘积 L { f ∗ g } = F ( s ) G ( s ) \mathcal{L}\{f * g\} = F(s) G(s) L{fg}=F(s)G(s)
微分性质 L { f ′ ( t ) } = s F ( s ) − f ( 0 + ) \mathcal{L}\{f'(t)\} = s F(s) - f(0^+) L{f(t)}=sF(s)f(0+)(含初始值项) L { f ′ ( t ) } = s F ( s ) \mathcal{L}\{f'(t)\} = s F(s) L{f(t)}=sF(s)(无初始值项,因积分对称)
积分性质 L { ∫ 0 t f ( τ ) d τ } = 1 s F ( s ) \mathcal{L}\{\int_0^t f(\tau) d\tau\} = \frac{1}{s} F(s) L{0tf(τ)dτ}=s1F(s) L { ∫ − ∞ t f ( τ ) d τ } = 1 s F ( s ) + C \mathcal{L}\{\int_{-\infty}^t f(\tau) d\tau\} = \frac{1}{s} F(s) + C L{tf(τ)dτ}=s1F(s)+C(含积分常数)
时域乘法 m a t h c a l L { t f ( t ) } = − d F ( s ) d s mathcal{L}\{t f(t)\} = -\frac{dF(s)}{ds} mathcalL{tf(t)}=dsdF(s) L { t f ( t ) } = − d F ( s ) d s \mathcal{L}\{t f(t)\} = -\frac{dF(s)}{ds} L{tf(t)}=dsdF(s)
初始值定理 lim ⁡ s → ∞ s F ( s ) = f ( 0 + ) \lim_{s \to \infty} s F(s) = f(0^+) limssF(s)=f(0+)无(因考虑全时域,无法直接提取初始值)
终值定理 lim ⁡ s → 0 + s F ( s ) = f ( ∞ ) \lim_{s \to 0^+} s F(s) = f(\infty) lims0+sF(s)=f()(若存在)通常无效(因信号可能在 t → ± ∞ t \to \pm\infty t± 无界)

3. 关键差异总结
  1. 收敛域
    • 单边变换只需 Re ( s ) > σ \text{Re}(s) > \sigma Re(s)>σ,简化了收敛性分析。
    • 双边变换需同时保证正负无穷积分收敛,收敛域常为带状区域。

  2. 初始条件
    • 单边变换通过 s F ( s ) − f ( 0 + ) sF(s) - f(0^+) sF(s)f(0+) 显式处理初始值。
    • 双边变换因积分对称性,初始值隐含在全时域积分中。

  3. 非因果信号
    • 单边变换无法表示负时间部分的信号。
    • 双边变换必须用于分析含负时间成分的信号(如周期信号)。

  4. 工程应用
    单边变换:电路分析、控制系统(默认因果性)。
    双边变换:信号处理、理论分析(需额外处理收敛性)。


4. 示例验证

信号 ( f(t) = u(t) )
• 单边变换: L { u ( t ) } = 1 s   ( Re ( s ) > 0 ) \mathcal{L}\{u(t)\} = \frac{1}{s} \, (\text{Re}(s) > 0) L{u(t)}=s1(Re(s)>0)
• 双边变换: L { u ( t ) } = 1 s   ( Re ( s ) > 0 ) \mathcal{L}\{u(t)\} = \frac{1}{s} \, (\text{Re}(s) > 0) L{u(t)}=s1(Re(s)>0),但仅适用于 t ≥ 0 t \geq 0 t0

非因果信号 ( f(t) = u(-t) )
• 单边变换: L { u ( − t ) } = 0 \mathcal{L}\{u(-t)\} = 0 L{u(t)}=0(因 t ≥ 0 t \geq 0 t0 u ( − t ) = 0 u(-t) = 0 u(t)=0)。
• 双边变换: L { u ( − t ) } = − 1 s   ( Re ( s ) < 0 ) \mathcal{L}\{u(-t)\} = -\frac{1}{s} \, (\text{Re}(s) < 0) L{u(t)}=s1(Re(s)<0)


5. 选择依据

单边变换:适用于实际工程问题(如电路、控制系统),默认信号因果。
双边变换:适用于理论分析(如信号频谱、全时域响应),需注意收敛域限制。

通过上述对比可知,两种变换的核心思想一致,但因定义域差异导致性质和应用场景不同。正确选择变换方法可显著简化问题分析与求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值