霍尔增量式编码器左右车轮线速度的计算

本文详细介绍了如何利用霍尔式编码器计算车轮的线速度,涉及到的关键参数包括轮子半径、脉冲数以及减速比。通过实例展示了如何根据编码器的脉冲数和轮子转动来确定每个脉冲对应的距离,并在5ms的定时器中断中计算出轮子的行进距离和线速度。此外,还解释了四倍频技术在提高测量精度中的作用,使得脉冲检测更加精确。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于霍尔式编码器的左右轮线速度计算:

首先线速度=距离s / 时间 t

要获得距离S ,也就是轮子在一段时间内跑过的距离。要先知道一下两个参数:
1.轮子的半径 r
2.轮子转动一圈的脉冲数 cnt

轮子转动一圈的脉冲数:如电机我们选用减速比为1:90的TT直流减速电机,编码器为每圈12个正交脉冲。即单相测速时,车轮转动一圈可以获取1080个脉冲,如果采用AB相四倍频计数,即可获取4320个脉冲。

比如减速比1:90TT直流减速电机 ,车轮转动1圈则电机转动90圈 ,霍尔编码器的极对数为8对 也就是8个N极 8个S极 则轮子转动一圈的脉冲数产生的脉冲数A相=B相= cnt =90*8=720

通过这两个参数可以得到轮子转动一个脉冲走过的距离 m

假设有一个轮子:
一圈的脉冲数为:3000
轮子的半径为: 0.03m

可以得到m = (2 * pi * r ) / cnt = (2* pi*0.03) / 3000 =0.000062831/脉冲

现在开启一个定时器 假设为5ms触发一次中断 获取脉冲个数 mount 比如 mount =500
则 轮子在5ms 内走过的距离 s =mount * m =500*0.000062831 =0.0314 m
走过的时间为 T(out) =5ms=0.005s

就可以获得线速度 v=s / t =(mount * m)/ T(out) =((2*pi * r ) / cnt) *m / T(out) 单位m/s

将单位换算为mm/s 得到 v = ((2 * pi * r ) / cnt)*m /T(out) *1000

编码器4倍频:
TTL方波信号,A,B两相相差90度相(1/4T),这样,在0度相位角,90度,180度,270度相位角,这四个位置有上升沿和下降沿,这样,实际上在1/4T方波周期就可以有方向变化的判断,这样1/4的T周期就是最小测量步距,通过电路对于这些上升沿与下降沿的判断,可以4倍于PPR读取位移的变化,这就是方波的四倍频。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值