参考链接:https://www.cnblogs.com/lijieqiong/p/5158198.html
参考链接:https://www.cnblogs.com/skyme/p/4651331.html
先简单回顾一下马尔可夫链的含义——即在一个状态序列中,当前状态只与其前一个状态有关。
而隐马尔可夫链则是多了一个隐含状态。每一个隐含状态会产生一个可见状态,这个过程的概率称为输出概率。从一个隐含状态转化到下一个隐含状态,这个过程的概率称为转换概率。隐含状态的发生概率称为起始概率。
举例,从一个女生发朋友圈的活动,{在家看书,逛公园,去超市},推测天气,{晴天,下雨}。
在这个例子中,隐含状态是天气,可见状态是女生的活动,天气的概率为起始概率,如P(雨)=0.7,P(晴)=0.3;当前天气->下一天的天气为转换概率,如第一天晴,第二天下雨的概率为0.4;天气->活动的概率为输出概率,如下雨天去超市的概率为0.2。
HMM模型,可以应用于语音识别,对于一个语音状态序列(可见状态),预测文字信息(隐含状态)。(待续)