文献阅读003【精读】


title: 文献阅读003【精读】

论文:2005 CVPR a nonlinear approach for face sketch synthesis and recognition

网盘链接密码:10s5

摘要

本论文采用基于画像实现人脸识别系统,包括两大元素:画像合成+画像识别。
画像合成的方法:local linear preserving of geometry between photo and sketch images.
原理:locall linear embedding (LLE)
画像识别的方法:nonlinear discriminate analysis
实验:600 photo-sketch pairs

1. INTRODUCTION

画像识别可用于:在没有 probe face photo 的情况,我们用画家画出来的画像(drawn sketch)在 photo database 中搜索。
在直觉上,我们习惯将drwan sketch转换成photo,然后再从photo database中搜索。但这是一个病态问题(ill-pose problem),因为drawn sketch一般只有脸部的主要特征,忽略了许多细节。
因此,本文提出一种方法:将摄像头拍到的photo转换成pseudo-sketch,与[2002 ICIP Face photo recognition using sketch]一样,只是本论文是用非线性的转换方法。

2. Pseudo-sketch Synthesis

基于LLE的原理,本文将脸部分成许多patches(之间有部分重叠),对一个新图片的每个patch,从训练集中找出最近的K个patches。
如:脸部的嘴为一个patch,从训练集中的每张图找出和它最近的k个嘴的patches。
算法如下:

for i in range(N): // N = patches.sum()
	1. p_k_neighbors[i] = KNN(I_p[i], training_photos) // k dimension
	2. weights_k_p = minimize_error(I_p[i], k_neightbor[i])
	3. I_s[i] = weights_k_p * s_k_neighbors[i] //s_k_neighbors[i] corresponding to p_k_neighbors[i]

公式推导:参考LLE的推导 ==> LLE原理总结

parameters

  1. the number of neighbors** K**
  2. the patch size
  3. the degree of overlapping

当K超过50时开始模糊

patch size

3. Sketch Recognition

采用KNDA(kernel-based nonlinear discriminant analysis)的方法,核函数为 polynomial kernel function k ( x 1 , x 2 ) = ( a ( x 1 ⋅ x 2 ) + b ) d k(x_1,x_2) = (a(x_1·x_2)+b)^d k(x1,x2)=(a(x1x2)+b)d

本文将probe sketch 和 pseudo-sketch 投射到 KNDA 创建出的subspace,计算两者的距离: d = ∣ ∣ y r − y p ∣ ∣ d=||y^r-y^p|| d=yryp
y^r and y^p are the projections of the probe sketch and pseudo-sketch

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值