CASENet

本文介绍了一种新的深度学习框架CASENet,该框架利用多标签学习和新颖的跳层结构来解决类别感知语义边缘检测问题。通过在ResNet基础上构建并结合多标签损失函数,CASENet在SBD和Cityscapes数据集上实现了超越现有技术的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

code:https://github.com/anirudh-chakravarthy/CASENet
paper:https://arxiv.org/pdf/1705.09759.pdf

文章目录

摘要

边界和边缘线索对改善语义分割、对象识别、立体声和对象建议生成等多种视觉任务非常有益。 最近,边缘检测问题被重新讨论,并在深度学习方面取得了显著进展。 虽然经典边缘检测本身是一个具有挑战性的二元问题,但类别感知语义边缘检测本质上是一个更具挑战性的多标签问题。 我们对这个问题进行建模,使得每个边缘像素可以与多个类关联,因为它们出现在属于两个或多个语义类的轮廓或连接中。 为此,我们提出了一种新的基于ResNet的端到端深语义边缘学习体系结构和一种新的跳层体系结构,其中顶部卷积层的类别边缘激活共享并与相同的底层特征集融合。然后,我们提出了一个多标签损失函数来监督融合激活。 我们表明,我们提出的体系结构有利于这个问题的更好的性能,我们在标准数据集(如SBD和CityScape)上的性能大大超过了目前最先进的语义边缘检测方法。
在这里插入图片描述

论文的贡献

我们的工作与HED采用嵌套体系结构有关,但我们将工作扩展到更困难的类别感知语义边缘检测问题。 我们在本文中的主要贡献总结如下:

  • 为了解决边缘分类问题,我们提出了一个多标签学习框架,它允许改进边缘学习,而不是传统的多类框架。
  • 我们提出了一种新的嵌套体系结构,在ResNet上没有深入的监督,其中底部特征仅用于增强顶部分类。 我们表明,深入监督可能不利于我们的问题。
  • 我们在SBD和Cityscapes集上,我们的性能超过了以前最先进的方法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值