《商务与经济统计》笔记第四章

第四章:概率

4.1 随机试验、计数法则、概率分配

随机试验:随机试验的试验结果是完全确定的,在许多情形下试验结果甚至在进行实验之前已经列出;在任意一次试验或者重复中,有且仅有一种可能的试验结果发生;试验中究竟哪种试验结果会出现,完全由偶然性决定。

样本空间:随机试验的样本空间是试验所有结果组成的一个集合。

样本点:一种特定的试验结果被称为样本点。

4.1.1 计数法则、组合和排列

计数法则:多步骤试验计数法则、组合计数法则、排列计数法则

多步骤试验计数法则:第1步有n1种试验结果,第二步有n2种试验结果,则总共有n1*n2种试验结果。

组合计数法则:从N项中选取n项。从N项中任取n项的组合数为:

C n N = N ! n ! ( N − n ) ! C_n^N = \frac{{N!}}{{n!\left( {N - n} \right)!}} CnN=n!(Nn)!N!

排列计数法则:从N项中选取n项,并考虑选取的顺序。从N项中任取n项的排列数为:

P n N = N ! ( N − n ) ! P_n^N = \frac{{N!}}{{\left( {N - n} \right)!}} PnN=(Nn)!N!

4.1.2 概率分配

概率分配的两个基本条件:

  1. 分配给每个试验结果的概率值都必须在0和1之间。
  2. 所有试验结果的概率之和必须等于1。

如何为试验结果分配概率:古典法、相对频率法、主观法

古典法:每个试验结果是等概率发生的。

相对频率法:适用于可以大量进行重复的试验,且能取得试验结果发生频率的数据。

主观法:利用一切可以获得的信息,为试验结果分配一个(介于0到1之间的)概率值,用以表达各个试验结果发生的可信程度。

4.2 事件及其概率

事件:事件是样本点的一个集合。(具有某些相同特征的样本点的集合)
如:身高180cm以上的高中生。
事件的概率:事件的概率等于事件中所有样本点的概率之和。

4.3 概率的基本性质

事件的补:所有不包含在事件A的样本点定义为事件A的补。
并:
交:
加法公式 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) P(AB)=P(A)+P(B)P(AB)
互斥事件:如果两个事件没有公共的样本点,则称这两个事件互斥。
互斥事件的加法公式 P ( A ∪ B ) = P ( A ) + P ( B ) P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) P(AB)=P(A)+P(B)

4.4 条件概率

条件概率:在B已经发生的情况下,A发生的可能性。P(A|B)
联合概率:
边际概率:
条件概率计算 P ( A ∣ B ) = P ( A B ) P ( B ) P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} P(AB)=P(B)P(AB)

4.4.1 独立事件

两个事件 A和B是相互独立的,如果:

P ( A ∣ B ) = P ( A ) P\left( {A|B} \right) = P\left( A \right) P(AB)=P(A)或者 P ( B ∣ A ) = P ( B ) P\left( {B|A} \right) = P\left(B\right) P(BA)=P(B)

否则,两个事件是相依的。

4.4.2 乘法公式

P ( A B ) = P ( A ) P ( B ∣ A ) P\left( {AB} \right) = P\left( A \right)P\left( {B|A} \right) P(AB)=P(A)P(BA)

P ( A B ) = P ( B ) P ( A ∣ B ) P\left( {AB} \right) = P\left( B \right)P\left( {A|B} \right) P(AB)=P(B)P(AB)

独立的乘法公式:
P ( A B ) = P ( A ) P ( B ) P\left( {AB} \right) = P\left( A \right)P\left( B \right) P(AB)=P(A)P(B)

4.5 贝叶斯定理

贝叶斯定理将主观确定的先验概率与其他方法得到的概率相结合,得到修正后的后验概率。

先验概率→新信息→应用贝叶斯定理→后验概率

贝叶斯定理(两事件情形)

P ( A 1 ∣ B ) = P ( A 1 ) P ( B ∣ A 1 ) P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) P\left( {{A_1}|B} \right) = \frac{{P\left( {{A_1}} \right)P\left( {B|{A_1}} \right)}}{{P\left( {{A_1}} \right)P\left( {B|{A_1}} \right) + P\left( {{A_2}} \right)P\left( {B|{A_2}} \right)}} P(A1B)=P(A1)P(BA1)+P(A2)P(BA2)P(A1)P(BA1)

P ( A 2 ∣ B ) = P ( A 2 ) P ( B ∣ A 2 ) P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) P\left( {{A_2}|B} \right) = \frac{{P\left( {{A_2}} \right)P\left( {B|{A_2}} \right)}}{{P\left( {{A_1}} \right)P\left( {B|{A_1}} \right) + P\left( {{A_2}} \right)P\left( {B|{A_2}} \right)}} P(A2B)=P(A1)P(BA1)+P(A2)P(BA2)P(A2)P(BA2)

贝叶斯定理

P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) + ⋯ + P ( A n ) P ( B ∣ A n ) P\left( {{A_i}|B} \right) = \frac{{P\left( {{A_i}} \right)P\left( {B|{A_i}} \right)}}{{P\left( {{A_1}} \right)P\left( {B|{A_1}} \right) + P\left( {{A_2}} \right)P\left( {B|{A_2}} \right) + \cdots + P\left( {{A_n}} \right)P\left( {B|{A_n}} \right)}} P(AiB)=P(A1)P(BA1)+P(A2)P(BA2)++P(An)P(BAn)P(Ai)P(BAi)

贝叶斯定理广泛应用于决策分析中。先验概率通常是由决策者主观估计的,在取得样本信息后,计算后验概率以供决策者选择最佳策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值