《商务与经济统计》笔记第五章

第五章:离散型概率分布

5.1 随机变量

随机变量:是对试验结果的数值描述。
离散型随机变量:可以取有限多个值或者无限可数多个值的随机变量。
连续型数值变量:可以去某一区间或者多个区间内任意值的随机变量

一种确定随机变量是离散型还是连续型的方法,是把随机变量的值看作一条线段上的点。任意选择随机变量的两个值,假如在线段上的这两点之间的所有点都可能是随机变量的取值,则该随机变量就是连续型的。

5.2 离散型概率分布

随机变量的概率分布是描述随机变量取不同值的概率。

对于离散型随机变量x,概率函数给出随机变量取每种值的概率,记作f(x)。
离散型概率函数的基本条件:
1、 f ( x ) ⩾ 0 f\left( x \right) \geqslant 0 f(x)0
2、 ∑ f ( x ) = 1 \sum {f\left( x \right)} = 1 f(x)=1

离散型均匀概率函数:
f(x)=1/n
常用离散型随机变量的概率分布通常以公式的形式给出,二项分布、泊松分布和超几何分布是其中最重要的三类分布。

5.3 数学期望和方差

5.3.1 数学期望

随机变量的数学期望或均值是对随机变量中心位置的一种度量。

离散型随机变量的数学期望:
E ( x ) = ∑ x f ( x ) E\left( x \right) = \sum {xf\left( x \right)} E(x)=xf(x) = μ = \mu =μ

虽然数学期望给出了随机变量中心位置的度量,我们常常还需要度量随机变量的变异性或分散程度。用方差来度量
离散型随机变量的方差:
V a r ( x ) = ∑ ( x − μ ) 2 f ( x ) Var\left( x \right) = \sum {{{\left( {x - \mu } \right)}^2}f\left( x \right)} Var(x)=(xμ)2f(x) = σ 2 = {\sigma ^2} =σ2
如公式所示,方差公式的关键是离差 ( x − μ ) {\left( {x - \mu } \right)} (xμ),其度量随机变量的某一特定值与数学期望的距离。
标准差: σ \sigma σ,其单位与随机变量的单位相同,更加常用于描述一个随机变量的变异性。方差 σ 2 \sigma^2 σ2的单位是随机变量单位的平方,其含义较难解释。

5.4 二元分布、协方差和金融资产组合

关于两个随机变量的概率分布称为二元概率分布

随机变量x和y的协方差:

σ x y = [ V a r ( x + y ) − V a r ( x ) − V a r ( y ) ] / 2 {\sigma _{xy}} = \left[ {Var\left( {x + y} \right) - Var\left( x \right) - Var\left( y \right)} \right]/2 σxy=[Var(x+y)Var(x)Var(y)]/2

随机变量x和y的相关系数:

ρ x y = σ x y σ x σ y {\rho _{xy}} = \frac{{{\sigma _{xy}}}}{{{\sigma _x}{\sigma _y}}} ρxy=σxσyσxy

相关系数的值越接近于+1,表明同向线性关系越强;越接近于-1,表明反向线性关系越强;越接近于0,表明没有线性关系。

随机变量x和y的线性组合的数学期望:
E ( a x + b y ) = a E ( x ) + b E ( y ) E\left( {ax + by} \right) = aE\left( x \right) + bE\left( y \right) E(ax+by)=aE(x)+bE(y)
两个随机变量的线性组合的方差:
V a r ( a x + b y ) = a 2 V a r ( x ) + b 2 V a r ( y ) + 2 a b σ x y Var\left( {ax + by} \right) = {a^2}Var\left( x \right) + {b^2}Var\left( y \right) + 2ab{\sigma _{xy}} Var(ax+by)=a2Var(x)+b2Var(y)+2abσxy

5.5 二项概率分布

二项试验:(性质)

  1. 试验由一系列相同的n个试验组成
  2. 每次试验有两种可能的结果,我们把一个称为成功,一个成为失败
  3. 每次试验成功的概率都是相同的,用P来表示;失败的概率也相同,用1-P表示
  4. 试验是相互独立的

如果一个试验具有性质2、3、4,则称该试验是由伯努利过程产生的。另外如果该试验还具有性质1,则称其为二项试验。在二项试验中,我们感兴趣的是在n次试验中成功出现的次数。

n次试验中恰有x次成功的试验结果的数目: C x n = n ! x ! ( n − x ) ! C_x^n = \frac{{n!}}{{x!\left( {n - x} \right)!}} Cxn=x!(nx)!n!

在n次试验中有x次成功的特定试验结果的概率= p x ( 1 − p ) n − x {p^x}{\left( {1 - p} \right)^{n - x}} px(1p)nx

上述两式结合,得到二项概率函数:

f ( x ) = C x n p x ( 1 − p ) n − x f\left( x \right) = C_x^n{p^x}{\left( {1 - p} \right)^{n - x}} f(x)=Cxnpx(1p)nx = n ! x ! ( n − x ) ! p x ( 1 − p ) n − x = \frac{{n!}}{{x!\left( {n - x} \right)!}}{p^x}{\left( {1 - p} \right)^{n - x}} =x!(nx)!n!px(1p)nx

二项分布的数学期望和方差:

E ( x ) = μ E\left( x \right) = \mu E(x)=μ = n p = np =np
V a r ( x ) = σ 2 Var\left( x \right) = {\sigma ^2} Var(x)=σ2 = n p ( 1 − p ) = np\left( {1 - p} \right) =np(1p)

5.6 泊松分布

泊松分布:主要用于估计在特定时间段或空间中某事件发生的次数。

泊松试验的性质

  1. 在任意两个相等长度的区间上,事件发生的概率相等。
  2. 事件在某一个区间上是否发生与事件在其他区间上是否发生是独立的。

如果事件出现的次数满足以上这两个性质,则随机变量服从泊松概率分布。

泊松概率函数:

f ( x ) = μ x e − μ x ! f\left( x \right) = \frac{{{\mu ^x}{e^{ - \mu }}}}{{x!}} f(x)=x!μxeμ

其中:f(x)为事件在一个区间发生x次的概率;μ为事件在一个区间上发生次数的数学期望或均值;e=2.71828

5.7 超几何概率分布

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值