《商务与经济统计》笔记第九章

假设检验

假设检验讨论的是在推断统计中,如何利用假设检验来确定是否应拒绝关于总体参数值的说法。

在假设检验中,我们首先对总体参数做一个尝试性的假设,该尝试性的假设被称为原假设,记作 H 0 {H_0} H0 。然后,定义另一个与原假设的内容完全对立的假设,称之为备择假设,记作 H a {H_a} Ha 。假设检验的过程就是根据样本数据对这两个对立的假设 H 0 {H_0} H0 H a {H_a} Ha 进行检验。

9.1 原假设和备择假设的建立

所有假设检验的应用都包括搜集样本并利用样本结果提供下结论的依据。在确定原假设和备择假设时,关键的问题是思考搜集样本的目的是什么,我们想要得出怎样的结论。

刚才提到,在假设检验中,我们首先对总体参数做一个尝试性的假设,该尝试性的假设被称为原假设,记作 H 0 {H_0} H0 。然后,定义另一个与原假设的内容完全对立的假设,称之为备择假设,记作 H a {H_a} Ha
在有些情形下,更易于首先确定备择假设,然后再确定原假设;而在另一些情形下,更易于首先确定原假设,然后再确定备择假设。

9.1.1 将研究中的假设作为备择假设

许多假设检验的应用都是试图通过搜集证据来支持研究中的假设,在这些情形下,通常最好从备择假设开始,然后得到研究者希望支持的结论。
在接纳一项新事物之前,我们希望通过研究来判定是否有统计依据支持我们得出 新方法/新事物 确实更好的结论。在这种情形下,通常将研究中的假设表述作为备择假设。
比如,开发了一个新的教学方法,认为新的教学方法优于目前的方法。则备择假设为新方法更好,原假设为新方法不比老方法好。
又比如,开发了一个新的燃油系统,当前的燃油系统为24英里/加仑。则有:
H 0 : μ ⩽ 24 {H_0}:\mu \leqslant 24 H0:μ24
H a : μ > 24 {H_a}:\mu > 24 Ha:μ>24

9.1.2 将受到挑战的假说作为原假设

当然,不是所有的假设检验都是设计研究的假设。我们考虑假设检验的另一个应用。从一种信念或者假定开始,即从有关总体参数值的说法是真实的开始,然后我们利用假设检验对这种假定提出怀疑,并确定是否有统计证据支持得出假定不正确的结论。在这种情形下,首先确立原假设是有益的。原假设 H 0 {H_0} H0 表述了对总体参数值的信念或假说,在备择假设 H a {H_a} Ha 中,认为这种信念或者假说不正确。

比如:某饮料标签注明,每瓶为 67.6液盎司。我们认为标签是正确的,即瓶内罐装量的总体均值至少为67.6液盎司。于是,从假定标签是正确的开始,设定原假设为 H 0 : μ ⩾ 67.6 {H_0}:\mu \geqslant 67.6 H0:μ67.6 ;挑战这种假说,意味着标签是不正确的,将这种质疑作为备择假设, H a : μ < 67.6 {H_a}:\mu < 67.6 Ha:μ<67.6

有关部门进行抽样,如果抽样结果使我们得到拒绝 H 0 {H_0} H0 的结论,则推断 H a : μ < 67.6 {H_a}:\mu < 67.6 Ha:μ<67.6 为真,可以得出结论:标签不正确。如果抽样结果表明不能拒绝 H 0 {H_0} H0 ,则不能拒绝“标签是正确的”这一假设。

9.1.3 原假设和备择假设小结

对于总体均值的假设检验,我们令 μ 0 {\mu _0} μ0 代表假定值,并且必须采用以下三种形式之一进行假设检验:
1、 H 0 : μ ⩾ μ 0   {H_0}:\mu \geqslant {\mu _0}{\text{ }} H0:μμ0 
----- H a : μ < μ 0 {H_a}:\mu < {\mu _0} Ha:μ<μ0

2、 H 0 : μ ⩽ μ 0   {H_0}:\mu \leqslant {\mu _0}{\text{ }} H0:μμ0 
----- H a : μ > μ 0 {H_a}:\mu > {\mu _0} Ha:μ>μ0

3、 H 0 : μ = μ 0   {H_0}:\mu = {\mu _0}{\text{ }} H0:μ=μ0 
----- H a : μ ≠ μ 0 {H_a}:\mu \ne {\mu _0} Ha:μ=μ0

前两种形式被称为单侧检验,第三种形式称为双侧检验。

注意:表达式中的“=”部分,总是出现在原假设中。

9.2 第一类错误和第二类错误

理想的假设检验方法应该是:当 H 0 {H_0} H0 为真时接受 H 0 {H_0} H0 ,当 H a {H_a} Ha 为真时拒绝 H 0 {H_0} H0 。但是由于假设检验是基于样本信息得到,不可能得出的结论总是正确的,所以我们要考虑误差的可能性。

在这里插入图片描述

显著性水平:
当原假设为真并且以等式形式出现的时候,犯第一类错误的概率被称为检验的显著性水平。

对于汽车每加仑燃料行驶里程的例子而言,原假设是: H 0 : μ ⩽ 24 {H_0}:\mu \leqslant 24 H0:μ24 ,显著性水平是 当 μ = 24时拒绝 H 0 : μ ⩽ 24 {H_0}:\mu \leqslant 24 H0:μ24 的概率。
【疑问】:上句话的意思是否是:当真的 μ = 24时,样本结果认为 μ > 24的概率。

通常用 α 表示显著性水平,一般取 α 为0.05和0.01。

在实践中,由负责假设检验的人设定显著性水平。通过选择 α 控制犯第一类错误的概率。如果犯第一类错误的成本很高,则选择小的 α 值;如果犯第一类错误的成本不高,则通常选择较大的 α 值。

在假设检验的大多数应用中,虽然对发生第一类错误的概率进行了控制,但通常并没有控制发生第二类错误的概率。因此,如果决定接受 H 0 {H_0} H0,我们并不能确定该决策有多大的可信度。由于显著性检验中第二类错误的发生具有不确定性,所以通常建议在叙述中采用“不能拒绝 H 0 {H_0} H0”而不采用“接受 H 0 {H_0} H0” 这种说法。“不能拒绝 H 0 {H_0} H0”这种说法意味着我们对判断或行动持保留意见。实际上,不直接接受 H 0 {H_0} H0,使统计学家们规避了发生第二类错误的风险。不论何时,只要未对发生第二类错误的概率加以确定或控制,我们就不能得出接受 H 0 {H_0} H0的结论。在这种情形下,只能得出两种可能的结论:不能拒绝 H 0 {H_0} H0或 拒绝 H 0 {H_0} H0

9.3 总体均值的建议:σ 已知情形

本节说明在 σ 已知情形下如何对总体均值进行假设检验。

9.3.1 单侧检验

总体均值的单侧检验由以下两种形式:

1、下侧检验:
H 0 : μ ⩾ μ 0   {H_0}:\mu \geqslant {\mu _0}{\text{ }} H0:μμ0 
H a : μ < μ 0 {H_a}:\mu < {\mu _0} Ha:μ<μ0

2、上侧检验
H 0 : μ ⩽ μ 0   {H_0}:\mu \leqslant {\mu _0}{\text{ }} H0:μμ0 
H a : μ > μ 0 {H_a}:\mu > {\mu _0} Ha:μ>μ0

在 σ 已知情形下对总体均值进行假设检验,我们用标准正态随机变量z作为检验统计量来确定 x ‾ \overline x x 是否偏离假定值 μ 足够远,从而有理由拒绝原假设。令 σ x ‾ = σ / n {\sigma _{\overline x }} = \sigma /\sqrt n σx=σ/n ,检验统计量如下:

总体均值假设检验的检验统计量:σ 已知情形

z = x ‾ − μ 0 σ / n z = \frac{{\overline x - {\mu _0}}}{{\sigma /\sqrt n }} z=σ/n xμ0

下侧检验的关键问题在于,检验统计量z的值必须达到多小的时候,我们才能选择拒绝原假设。
有两种方法可以解决该问题:p-值法和临界值法。
p-值法:p-值是一个概率值,它度量样本所提供的证据对原假设的支持程度,p-值越小说明拒绝原假设的证据越多。
利用检验统计量可以计算p-值,用于计算p-值的方法依赖于检验使下侧检验、上侧检验还是双侧检验。
计算p-值:
1、对于下侧检验,p-值是检验统计量z小于或者等于样本所给出的检验统计量的值的概率(下侧面积)。
2、对于上侧检验,p-值是检验统计量z大于或者等于样本所给出的检验统计量的值的概率(上侧面积)。

p-值也叫做实际显著性水平。

p-值法的拒绝法则:
如果 p-值 <= α,则拒绝 H 0 {H_0} H0

临界值法:
临界值法要求我们首先确定被称为临界值的检验统计量的值。对于下侧检验,临界值是确定检验统计量的值是否小到足以拒绝原假设的一个基准。
在检验统计量的抽样分布中,与下侧面积 α (显著性水平)相对应的值是检验统计量的临界值。换句话说,临界值是使得我们拒绝原假设的检验统计量的最大值。
比如说,我们设定的显著性水平 α =0.01。利用标准正态概率表,我们发现 z=-2.23的下侧面积等于0.01。从而,如果由样本所得到的检验统计量的值小于或等于-2.23,则相应的p-值将小于或等于0.01。在这种情况下,我们拒绝原假设 H 0 {H_0} H0

下侧检验的拒绝法则:临界值法:
如果 z ⩽ − z α z \leqslant - {z_\alpha } zzα,则拒绝 H 0 {H_0} H0
式中, − z α - {z_\alpha } zα为临界值,即标准正太概率分布下侧的面积为 α 时对应的z值。

小结:
p-值法和临界值法总能得到相同的结论。

9.3.2 双侧检验

双侧检验的一般形式:
H 0 : μ = μ 0   {H_0}:\mu = {\mu _0}{\text{ }} H0:μ=μ0 
H a : μ ≠ μ 0 {H_a}:\mu \ne {\mu _0} Ha:μ=μ0

p-值法:
1、利用公式 z = x ‾ − μ 0 σ / n z = \frac{{\overline x - {\mu _0}}}{{\sigma /\sqrt n }} z=σ/n xμ0计算样本检验统计量的值;
2、如果样本检验统计量的值位于上侧(z>0),则计算z大于或者等于样本检验统计值的概率(上侧面积);如果样本检验统计量的值位于下侧(z<0),则计算z小于或者等于样本检验统计值的概率(下侧面积);
3、将第2步求出来的概率(面积)乘以2即求得p-值。

临界值法:(举例子说明)

对于双侧检验,取显著性水平 α=0.05时,每侧尾端临界值所对应的面积为:α/2=0.025。查标准正态概率表可知,检验统计量的临界值 − z 0.025 = − 1.96 - {z_{0.025}} = - 1.96 z0.025=1.96 z 0.025 = 1.96 {z_{0.025}} = 1.96 z0.025=1.96。从而利用临界值法,双侧检验的拒绝法则是:
如果 z ⩽ − 1.96 z \leqslant - 1.96 z1.96 或者 z ⩾ 1.96 z \geqslant 1.96 z1.96,则拒绝 H 0 {H_0} H0

9.3.3 小结

下侧检验上侧检验双侧检验
假设 H 0 : μ ⩾ μ 0   {H_0}:\mu \geqslant {\mu _0}{\text{ }} H0:μμ0  ; H a : μ < μ 0 {H_a}:\mu < {\mu _0} Ha:μ<μ0 H 0 : μ ⩽ μ 0   {H_0}:\mu \leqslant {\mu _0}{\text{ }} H0:μμ0  ; H a : μ > μ 0 {H_a}:\mu > {\mu _0} Ha:μ>μ0 H 0 : μ = μ 0   {H_0}:\mu = {\mu _0}{\text{ }} H0:μ=μ0  ; H a : μ ≠ μ 0 {H_a}:\mu \ne {\mu _0} Ha:μ=μ0
检验统计量 z = x ‾ − μ 0 σ / n z = \frac{{\overline x - {\mu _0}}}{{\sigma /\sqrt n }} z=σ/n xμ0 z = x ‾ − μ 0 σ / n z = \frac{{\overline x - {\mu _0}}}{{\sigma /\sqrt n }} z=σ/n xμ0 z = x ‾ − μ 0 σ / n z = \frac{{\overline x - {\mu _0}}}{{\sigma /\sqrt n }} z=σ/n xμ0
拒绝法则:p-值法如果 p − p- p ⩽ α \leqslant \alpha α,则拒绝 H 0 {H_0} H0如果 p − p- p ⩽ α \leqslant \alpha α,则拒绝 H 0 {H_0} H0如果 p − p- p ⩽ α \leqslant \alpha α,则拒绝 H 0 {H_0} H0
拒绝法则:临界值法如果 z ⩽ − z α z \leqslant - {z_\alpha } zzα,则拒绝 H 0 {H_0} H0如果 z ⩾ z α z \geqslant {z_\alpha } zzα,则拒绝 H 0 {H_0} H0如果 z ⩽ − z α / 2 z \leqslant - {z_{\alpha /2}} zzα/2 z ⩾ z α / 2 z \geqslant {z_{\alpha /2}} zzα/2,则拒绝 H 0 {H_0} H0

假设检验的步骤:
步骤1:提出原假设和备择假设;
步骤2:指定检验中的显著性水平 α \alpha α
步骤3:收集样本数据并计算样本检验统计量的值 z ∗ = x ‾ − μ 0 σ / n {z^*} = \frac{{\overline x - {\mu _0}}}{{\sigma /\sqrt n }} z=σ/n xμ0;【式中, μ 0 {{\mu _0}} μ0为总体均值的假设值。】

【p-值法】:
步骤4:利用检验统计量的值计算p-值;【通过标准正态概率表得到,即:表中 z ∗ {z^*} z值下侧的面积】
步骤5:如果 p − p- p ⩽ α \leqslant \alpha α,则拒绝 H 0 {H_0} H0
步骤6:在应用中解读统计结论;

【临界值法】:
步骤4:利用显著性水平 α \alpha α确定临界值【显著性水平 α \alpha α在标准正态概率表中对应的Z值】以及拒绝法则;
步骤5:利用检验统计量的值以及拒绝法则确定是否拒绝 H 0 {H_0} H0
步骤6:在应用中解读统计结论;

9.3.4 区间估计和假设检验的关系

前面已知,在 σ 已知的情形下,总体均值的 100 ( 1 − α ) % 100(1 - \alpha )\% 100(1α)%置信区间估计为:

x ‾ ± z α / 2 α n \overline x \pm {z_{\alpha /2}}\frac{\alpha }{{\sqrt n }} x±zα/2n α

总体均值的双侧假设检验的形式如下:

H 0 : μ = μ 0   {H_0}:\mu = {\mu _0}{\text{ }} H0:μ=μ0 
H a : μ ≠ μ 0 {H_a}:\mu \ne {\mu _0} Ha:μ=μ0

式中, μ 0 {{\mu _0}} μ0为总体均值的假设值。

假定我们用上述的方法构造总体均值的 100 ( 1 − α ) % 100(1 - \alpha )\% 100(1α)%置信区间。在得到的全部置信区间中,有 100 ( 1 − α ) % 100(1 - \alpha )\% 100(1α)%包含总体均值,有 100 α % 100\alpha \% 100α%不包含总体均值。于是,每当置信区间不包含 μ 0 {{\mu _0}} μ0时,如果我们拒绝 H 0 {H_0} H0,那么我们在原假设为真( μ = μ 0 \mu = {\mu _0} μ=μ0)时以概率 α \alpha α拒绝了原假设。
显著性水平是当原假设为真时拒绝原假设的概率。因此,构造一个 100 ( 1 − α ) % 100(1 - \alpha )\% 100(1α)%置信区间,并且当置信区间不包含 μ 0 {{\mu _0}} μ0时拒绝 H 0 {H_0} H0,等价于在显著性水平 α \alpha α下进行双侧假设检验。
利用置信区间进行双侧假设检验的方法概况如下:

用置信区间的方法进行如下形式的假设检验:

H 0 : μ = μ 0   {H_0}:\mu = {\mu _0}{\text{ }} H0:μ=μ0  H a : μ ≠ μ 0 {H_a}:\mu \ne {\mu _0} Ha:μ=μ0

1、从总体中抽取一个简单随机样本,并利用样本均值 x ‾ \overline x x 建立总体均值 μ \mu μ的置信区间。 x ‾ ± z α / 2 α n \overline x \pm {z_{\alpha /2}}\frac{\alpha }{{\sqrt n }} x±zα/2n α

2、如果置信区间包含假设值 μ 0 \mu_0 μ0,则不能拒绝 H 0 H_0 H0;否则,拒绝 H 0 H_0 H0

即:对于双侧假设检验,如果置信区间不包含 μ 0 \mu_0 μ0,则拒绝原假设。

9.4 总体均值的检验:σ 未知情形

在 σ 未知的清洗你改下,假设检验的步骤与在 σ 已知的情形下的步骤相同。

只不过。在 σ 未知情形下,检验统计量的分布是 t t t 分布。由于根据样本对 μ \mu μ σ \sigma σ 同时进行估计, t t t 分布的变异性更强。

总体均值假设检验的检验统计量: σ \sigma σ 未知情形

t = x ‾ − μ 0 s / n t = \frac{{\overline x - {\mu _0}}}{{s/\sqrt n }} t=s/n xμ0

总结:

下侧检验上侧检验双侧检验
假设 H 0 : μ ⩾ μ 0   {H_0}:\mu \geqslant {\mu _0}{\text{ }} H0:μμ0  ; H a : μ < μ 0 {H_a}:\mu < {\mu _0} Ha:μ<μ0 H 0 : μ ⩽ μ 0   {H_0}:\mu \leqslant {\mu _0}{\text{ }} H0:μμ0  ; H a : μ > μ 0 {H_a}:\mu > {\mu _0} Ha:μ>μ0 H 0 : μ = μ 0   {H_0}:\mu = {\mu _0}{\text{ }} H0:μ=μ0  ; H a : μ ≠ μ 0 {H_a}:\mu \ne {\mu _0} Ha:μ=μ0
检验统计量 t = x ‾ − μ 0 s / n t = \frac{{\overline x - {\mu _0}}}{{s/\sqrt n }} t=s/n xμ0 t = x ‾ − μ 0 s / n t = \frac{{\overline x - {\mu _0}}}{{s /\sqrt n }} t=s/n xμ0 t = x ‾ − μ 0 s / n t = \frac{{\overline x - {\mu _0}}}{{s /\sqrt n }} t=s/n xμ0
拒绝法则:p-值法如果 p − p- p ⩽ α \leqslant \alpha α,则拒绝 H 0 {H_0} H0如果 p − p- p ⩽ α \leqslant \alpha α,则拒绝 H 0 {H_0} H0如果 p − p- p ⩽ α \leqslant \alpha α,则拒绝 H 0 {H_0} H0
拒绝法则:临界值法如果 t ⩽ − t α t \leqslant - {t_\alpha } ttα,则拒绝 H 0 {H_0} H0如果 t ⩾ t α t \geqslant {t_\alpha } ttα,则拒绝 H 0 {H_0} H0如果 t ⩽ − t α / 2 t \leqslant - {t_{\alpha /2}} ttα/2 t ⩾ t α / 2 t \geqslant {t_{\alpha /2}} ttα/2,则拒绝 H 0 {H_0} H0

σ \sigma σ未知情形下的假设检验方法的应用依赖于抽样总体的分布以及样本容量。如果总体是正态分布,则在任意样本容量下,本节所介绍的假设检验给出的都是精确的结果。如果总体不是正态分布,则这些方法是近似的。尽管如此,在大多数情况下,当样本容量 ⩾ \geqslant 30时都能给出满意的结果。如果总体近似服从正态分布,则在小样本容量下,比如n<15,仍可以得到满意的结果。当总体存在严重偏斜或者异常点时,建议样本容量应该在50以上。

9.5 总体比率

关于总体比率的假设检验有以下三种形式:

1、 H 0 : p ⩾ p 0 {H_0}:p \geqslant {p_0} H0:pp0 ; H a : P < P 0 {H_a}:P < {P_0} Ha:P<P0
2、 H 0 : p ⩽ p 0 {H_0}:p \leqslant {p_0} H0:pp0 ; H 0 : p ⩽ p 0 {H_0}:p \leqslant {p_0} H0:pp0
3、 H 0 : p = p 0 {H_0}:p = {p_0} H0:p=p0 ; H a : P ≠ P 0 {H_a}:P \ne {P_0} Ha:P=P0

第一种为下侧检验,第二种为上侧检验,第三种为双侧检验。

所使用的方法与对总体均值进行假设检验时所使用的方法相似,唯一的不同之处在于,利用样本比率机器标准误差来计算检验统计量。然后利用p-值法或者临界值法确定是否拒绝原假设。

p ‾ \overline p p是总体参数 p p p 的点估计量, p ‾ \overline p p的抽样分布是计算检验统计量的基础。

当原假设以等式形式为真时, p ‾ \overline p p 的期望值等于假设值 p 0 p_0 p0,即 E ( p ‾ ) = p 0 E\left( {\overline p } \right) = {p_0} E(p)=p0 p ‾ \overline p p 的标准误差为:
σ p ‾ = p 0 ( 1 − p 0 ) n {\sigma _{\overline p }} = \sqrt {\frac{{{p_0}\left( {1 - {p_0}} \right)}}{n}} σp=np0(1p0)

总体比率假设检验的检验统计量:

z = p ‾ − p 0 p 0 ( 1 − p 0 ) n z = \frac{{\overline p - {p_0}}}{{\sqrt {\frac{{{p_0}\left( {1 - {p_0}} \right)}}{n}} }} z=np0(1p0) pp0

z = p ‾ − p 0 σ p ‾ z = \frac{{\overline p - {p_0}}}{{{\sigma _{\overline p }}}} z=σppp0

小结:

下侧检验上侧检验双侧检验
假设 H 0 : p ⩾ p 0 {H_0}:p \geqslant {p_0} H0:pp0 ; H a : P < P 0 {H_a}:P < {P_0} Ha:P<P0 H 0 : p ⩽ p 0 {H_0}:p \leqslant {p_0} H0:pp0 ; H 0 : p ⩽ p 0 {H_0}:p \leqslant {p_0} H0:pp0 H 0 : p = p 0 {H_0}:p = {p_0} H0:p=p0 ; H a : P ≠ P 0 {H_a}:P \ne {P_0} Ha:P=P0
检验统计量 z = p ‾ − p 0 p 0 ( 1 − p 0 ) n z = \frac{{\overline p - {p_0}}}{{\sqrt {\frac{{{p_0}\left( {1 - {p_0}} \right)}}{n}} }} z=np0(1p0) pp0 z = p ‾ − p 0 p 0 ( 1 − p 0 ) n z = \frac{{\overline p - {p_0}}}{{\sqrt {\frac{{{p_0}\left( {1 - {p_0}} \right)}}{n}} }} z=np0(1p0) pp0 z = p ‾ − p 0 p 0 ( 1 − p 0 ) n z = \frac{{\overline p - {p_0}}}{{\sqrt {\frac{{{p_0}\left( {1 - {p_0}} \right)}}{n}} }} z=np0(1p0) pp0
拒绝法则:p-值法如果 p − p- p ⩽ α \leqslant \alpha α,则拒绝 H 0 {H_0} H0如果 p − p- p ⩽ α \leqslant \alpha α,则拒绝 H 0 {H_0} H0如果 p − p- p ⩽ α \leqslant \alpha α,则拒绝 H 0 {H_0} H0
拒绝法则:临界值法如果 z ⩽ − z α z \leqslant - {z_\alpha } zzα,则拒绝 H 0 {H_0} H0如果 z ⩾ z α z \geqslant {z_\alpha } zzα,则拒绝 H 0 {H_0} H0如果 z ⩽ − z α / 2 z \leqslant - {z_{\alpha /2}} zzα/2 z ⩾ z α / 2 z \geqslant {z_{\alpha /2}} zzα/2,则拒绝 H 0 {H_0} H0

9.6 假设检验与决策

9.7 计算第二类错误的概率

对总体均值进行假设检验时,可以按照如下所给的流程逐步计算得到发生第二类错误的概率。

1、确立原假设和备择假设;
2、在显著性水平 α \alpha α 下,根据临界值方法确定临界值并建立检验的拒绝规则;
3、利用步骤2中所得的拒绝规则,求解与检验统计量的临界值相对应的样本均值的取值;
4、利用步骤3中的结果,得到接受 H 0 H_0 H0时所对应的样本均值的值,这些值构成了检验的接受域;
5、对于满足备择假设的 μ \mu μ 值,利用 x ‾ \overline x x 的抽样分布和步骤4中的接受域,计算样本均值落在接受域的概率。这一概率值即为在选定的 μ \mu μ 值处发生第二类错误的概率。

9.8 对总体均值进行假设检验时样本容量的确定

总体均值单侧假设检验的样本容量:

n = ( z α + z β ) 2 σ 2 ( μ 0 − μ a ) 2 n = \frac{{{{\left( {{z_\alpha } + {z_\beta }} \right)}^2}{\sigma ^2}}}{{{{\left( {{\mu _0} - {\mu _a}} \right)}^2}}} n=(μ0μa)2(zα+zβ)2σ2

其中, α \alpha α等于第一类错误的概率, β \beta β等于第二类错误的概率。 z α z_\alpha zα代表标准正态分布的上侧面积为 α \alpha α时对应的 z z z值, z β z_\beta zβ代表标准正态分布的上侧面积为 β \beta β时对应的 z z z值; σ \sigma σ是总体的标准差; μ 0 \mu_0 μ0为原假设中样本均值的值; μ a \mu_a μa为第二类错误中所采用的总体均值的值。
【注意】:在双侧检验中,上式中以 z α / 2 {z_{\alpha /2}} zα/2 代替 z α {z_{\alpha}} zα

可以观察到, α \alpha α β \beta β 和样本容量 n n n 之间的如下三种关系:
1、当三者中有两者已知时,即可计算得到第三者;
2、对于给定的显著性水平 α \alpha α,增大样本容量会减小 β \beta β
3、对于给定的样本容量,减小 α \alpha α 将会使 β \beta β 增大,相反增大 α \alpha α 会使 β \beta β 减小。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值