利用大模型deepseek搭建本地知识库并且实现 java 调用

一、安装大模型

1、首先是下载 ollama点击下载
选择适合自己操作系统的版本,ollama是一个开源的 LLM(大型语言模型)服务工具,用于本地环境快速搭建部署大模型。
在这里插入图片描述
在这里插入图片描述
2、傻瓜式安装ollama即可,默认安装路径是不需要配置环境变量的;

安装ollama会强制安装到c盘,所以环境变量是配置好的,下次再进入执行cmd黑窗口就行

3、选择大模型,比如deepseek R1;
在这里插入图片描述
4、点击对应大模型,选择合适的版本,比如1.5b;
在这里插入图片描述
5、复制右侧执行脚本下载大模型并启动;
在这里插入图片描述
在这里插入图片描述

第一次执行命令可能会下载失败,多执行几次就好了!!!
如果退出或者关闭命令窗口,再次进入也是通过 ollama run deepseek-r1:1.5b 命令启动大模型;

6、测试效果;
在这里插入图片描述

二、安装前端可视化页面open-webUI

1、下载miniconda点击下载
选择适合自己操作系统的版本,下载后需要配置环境变量;
2、下载 python点击下载
python 也需要配置环境变量,如果之前已经安装过就可以忽略该步骤;
在这里插入图片描述
3、创建webUI环境:conda create -n open-webui pyhton==3.12.6
在这里插入图片描述

⚠️注意:python 需要配置环境变量且版本号一致!

4、激活webUI环境:activate open-webui
在这里插入图片描述
5、在open-webui环境下安装依赖:pip install open-webui
在这里插入图片描述
6、启动open-webui服务:open-webui serve 在这里插入图片描述
在这里插入图片描述

⚠️注意:启动 open-webui 的时候需要保证大模型服务是启动状态!
在这里插入图片描述

7、访问页面:127.0.0.1:8080
在这里插入图片描述
8、创建账户
在这里插入图片描述
9、选择自己的模型就可以使用了
在这里插入图片描述

三、搭建本地知识库

1、设置解析文档需要使用的大模型
在这里插入图片描述
2、上传文件到知识库
在这里插入图片描述
3、进入大模型选择上传的文件
在这里插入图片描述
在这里插入图片描述
5、重新登录防止不生效
在这里插入图片描述
6、测试效果
在这里插入图片描述
通过后台日志可以看到确实是使用的上传文件进行的解析匹配
在这里插入图片描述
这是我上传的文件,通过测试发现 1.5b 的效果不是很好,或者是我提供的文件格式不太好,可以试试以问答模式提供的文件效果。
在这里插入图片描述

四、总结

1、作为开发人员,肯定是希望能通过 api 的模式调用大模型,下面介绍下ollama的 api 使用方式。
Ollama默认端口为 11434
Ollama api:
获取模型列表 : http://localhost:11434/api/tags
对话生成文本‌: curl -X POST http://127.0.0.1:11434/api/generate -d'{"model":"deepseek-r1:1.5b", "prompt":"我是谁", "stream":false}'
model: 使用的大模型;
prompt: 提示词,交互信息
stream: 是否以流的形式返回

在这里插入图片描述
在这里插入图片描述
2、通过测试发现1.5b 版本的效果不尽如人意,所以建议如果自己机器性能如果可以的话,可以考虑下载高版本的。我自己电脑配置为12G 的内存,测试 1.5b 时比较困难,大家可以参考下。
3、ollama不仅可以部署 deepseek,还可以选择其他大模型,感兴趣的可以试试。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值