一、安装大模型
1、首先是下载 ollama点击下载;
选择适合自己操作系统的版本,ollama是一个开源的 LLM(大型语言模型)服务工具,用于本地环境快速搭建部署大模型。
2、傻瓜式安装ollama即可,默认安装路径是不需要配置环境变量的;
安装ollama会强制安装到c盘,所以环境变量是配置好的,下次再进入执行cmd黑窗口就行
3、选择大模型,比如deepseek R1;
4、点击对应大模型,选择合适的版本,比如1.5b;
5、复制右侧执行脚本下载大模型并启动;
第一次执行命令可能会下载失败,多执行几次就好了!!!
如果退出或者关闭命令窗口,再次进入也是通过 ollama run deepseek-r1:1.5b 命令启动大模型;
6、测试效果;
二、安装前端可视化页面open-webUI
1、下载miniconda点击下载;
选择适合自己操作系统的版本,下载后需要配置环境变量;
2、下载 python点击下载;
python 也需要配置环境变量,如果之前已经安装过就可以忽略该步骤;
3、创建webUI环境:conda create -n open-webui pyhton==3.12.6
⚠️注意:python 需要配置环境变量且版本号一致!
4、激活webUI环境:activate open-webui
5、在open-webui环境下安装依赖:pip install open-webui
6、启动open-webui服务:open-webui serve
⚠️注意:启动 open-webui 的时候需要保证大模型服务是启动状态!
7、访问页面:127.0.0.1:8080
8、创建账户
9、选择自己的模型就可以使用了
三、搭建本地知识库
1、设置解析文档需要使用的大模型
2、上传文件到知识库
3、进入大模型选择上传的文件
5、重新登录防止不生效
6、测试效果
通过后台日志可以看到确实是使用的上传文件进行的解析匹配
这是我上传的文件,通过测试发现 1.5b 的效果不是很好,或者是我提供的文件格式不太好,可以试试以问答模式提供的文件效果。
四、总结
1、作为开发人员,肯定是希望能通过 api 的模式调用大模型,下面介绍下ollama的 api 使用方式。
Ollama默认端口为 11434
Ollama api:
获取模型列表 : http://localhost:11434/api/tags
对话生成文本: curl -X POST http://127.0.0.1:11434/api/generate -d'{"model":"deepseek-r1:1.5b", "prompt":"我是谁", "stream":false}'
model
: 使用的大模型;
prompt
: 提示词,交互信息
stream
: 是否以流的形式返回
2、通过测试发现1.5b 版本的效果不尽如人意,所以建议如果自己机器性能如果可以的话,可以考虑下载高版本的。我自己电脑配置为12G 的内存,测试 1.5b 时比较困难,大家可以参考下。
3、ollama不仅可以部署 deepseek,还可以选择其他大模型,感兴趣的可以试试。