主流模型Chat Template微调模版汇总

🍻Chat Template

有了transfomers框架后我们的微调工作都变得简单了起来,我们在自己进行一些模型的微调时主要的操作就是构建自己的数据集及数据格式,不同模型的在训练时都使用了不同的template。

因此,我从官方参考或实现中收集了几种主流模型的官方模板,以供大家自己进行微调时参考。

完整且持续更新的的Chat Template模板详见github项目 :https://github.com/mst272/LLM-Dojo/tree/main/chat_template

如果觉得有帮助欢迎大家star或者提交issue 及 pr

说明

不同模型在是否存在默认system message上有所不同(大多数模型都是没有的),所以以官方是否有为标准。

每个模型都附上了有system版本和无system版本,如果在自己训练模型的时候希望加上system message可以参照template模板自行添加。

(建议的做法是:如果官方没提供默认system message,可直接使用无system版本)

Qwen

官方版本默认的system message即:You are a helpful assistant

<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
This is a instruction<
### 如何在 `apply_chat_template` 方法中添加温度参数 在使用 Hugging Face 的 `Transformers` 库时,`apply_chat_template` 方法主要用于构建聊天模型的输入序列。然而,默认情况下该方法并不直接支持像 `temperature` 这样的采样参数[^1]。 为了实现这一功能,可以采取以下方式: #### 自定义模板并传递额外参数 虽然 `apply_chat_template` 不直接接受 `temperature` 参数,但在实际应用中可以通过自定义生成逻辑的方式间接设置它。具体来说,在调用 `generate()` 或其他生成函数时指定 `temperature` 参数即可[^2]。 以下是完整的代码示例展示如何结合 `apply_chat_template` 和 `temperature` 使用的方法: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("your-model-name") model = AutoModelForCausalLM.from_pretrained("your-model-name") # 构建对话历史记录 chat_history_ids = tokenizer.apply_chat_template( [ ("User", "What is the capital of France?"), ("Assistant", ""), ], tokenize=False, ) input_ids = tokenizer(chat_history_ids, return_tensors="pt").input_ids # 设置 generation_config 并加入 temperature 参数 outputs = model.generate( input_ids=input_ids, max_new_tokens=50, temperature=0.7 # 添加此参数控制随机性程度 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` 上述代码片段展示了如何通过 `model.generate()` 函数引入 `temperature` 参数来调整生成文本的概率分布[^3]。 #### 注意事项 需要注意的是,尽管可以在生成阶段配置 `temperature` 参数,但其效果取决于具体的模型架构以及训练过程中的超参设定。如果目标是对整个流程有更精细的掌控,则可能需要进一步探索高级 API 或者微调模型本身的行为模式。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值