「计算机控制系统」4. 计算机控制系统分析

Z平面
稳定性分析
稳态误差分析
动态过程分析
频率特性


Z平面与S平面的映射关系

在这里插入图片描述

  1. S平面虚轴的映射
    在这里插入图片描述

  2. ω \omega ω θ \theta θ的映射
    在这里插入图片描述
    可以看出从S平面到Z平面并不是一一映射

  3. 主带与旁带
    在这里插入图片描述
    S平面上宽度 ω s \omega_s ωs的一条可以映射到整个Z平面,具体的情况如下:

  4. 主带的映射
    在这里插入图片描述
    S平面主带左半平面可以映射到Z平面单位圆内。
    在这里插入图片描述
    右半平面可以映射到Z平面单位圆外。

  5. 等频率线的映射
    等频率即 ω \omega ω为常数,在S平面与实轴平行
    在这里插入图片描述

  6. 等衰减率线的映射
    等衰减率即是 ξ ω n \xi \omega_n ξωn乘积为定值,对应平行于虚轴的直线
    在这里插入图片描述

  7. 等阻尼比轨迹
    cos ⁡ β = ξ \cos \beta=\xi cosβ=ξ,等阻尼比即是S平面过原点的射线
    在这里插入图片描述

稳定性分析

连续系统稳定:闭环特征根都在S平面的左半平面
根据映射关系:
离散系统稳定:闭环特征根都在Z平面单位圆内

利用特征根判别系统稳定性:
在这里插入图片描述

离散Routh判据

Routh判据是用来判断极点是否位于复平面左半平面的。因此需要引入一个新的变换,将Z平面的单位圆内,映射到某个平面的左半平面:
W变换 z = 1 + w 1 − w \displaystyle z=\frac{1+w}{1-w} z=1w1+w
运用W变换以后,就可以像之前连续系统一样运用Routh判据了。

两种特殊情况的处理方法:

  1. 某行第一列为0:
    用足够小的正数 ε \varepsilon ε替代0参与运算
    用因子 ( w + a ) (w+a) (w+a)乘以原特征方程,其中 a a a为任意正数

  2. 某行全为0:
    用全0行的上一行构造辅助方程,求导后用其系数替代全0行

看一个综合性的例题:
在这里插入图片描述
在这里插入图片描述
可以看出,采样使得系统的稳定区间变小,不稳定性增加。
但采样周期减小,系统更加接近连续,则这种影响也就减小。

对于特征方程二次的系统, D ( z ) = z 2 + A z + B = 0 D(z)=z^2+Az+B=0 D(z)=z2+Az+B=0,
如果满足:
∣ D ( 0 ) ∣ = ∣ B ∣ < 1 D ( 1 ) = 1 + A + B > 0 D ( − 1 ) = 1 − A + B > 0 \begin{aligned} &|D(0)|=|B|<1\\ &D(1)=1+A+B>0\\ &D(-1)=1-A+B>0 \end{aligned} D(0)=B<1D(1)=1+A+B>0D(1)=1A+B>0
则系统稳定。

Jury判据

相比与劳斯判据,不需要进行W变换。但缺点是只能判断是否稳定,而无法给出不稳定极点的个数。

在这里插入图片描述
「图源:刘建昌_计算机控制系统」

离散Nyquist判据

(了解)
特征方程: 1 + k D ( z ) G ( z ) = 0 1+kD(z)G(z)=0 1+kD(z)G(z)=0

  1. 确定 k D ( z ) G ( z ) kD(z)G(z) kD(z)G(z)的不稳定极点数p
  2. 代入 z = e j ω T z=e^{j \omega T} z=eT,在 0 ≤ ω T ≤ 2 π 0 \le \omega T \le2\pi 0ωT2π范围内,画出开环幅相频率特性曲线
  3. 计算曲线顺时针包围 z = − 1 z=-1 z=1的圈数 n n n
  4. q = p − n q=p-n q=pn,若 q = 0 q=0 q=0,则稳定

稳态误差

离散系统的稳态误差和连续系统的非常相近,可以对照进行理解
在这里插入图片描述
由此可以看出,稳态误差与以下因素都有关:

  1. 系统本身的结构参数
  2. 输入的形式和幅值
  3. 采样周期T

通过定义和终值定理求稳态误差:
在这里插入图片描述

静态误差系数

型别的划分:
系统开环传递函数分母包含 ( z − 1 ) (z-1) (z1)的阶数称为型别( z = 1 z=1 z=1的极点数)
因此开环传递函数可以写成:
1 ( z − 1 ) v A ( z ) B ( z ) \displaystyle \frac{1}{(z-1)^v}\frac{A(z)}{B(z)} (z1)v1B(z)A(z),其中v为系统型别

稳态误差:

型别vesspessvessa
0 A 1 + K p \frac{A}{1+K_p} 1+KpA ∞ \infty ∞ \infty
10 A K v \frac{A}{K_v} KvA ∞ \infty
200 A K a \frac{A}{K_a} KaA

需要注意的是,静态误差系数的计算不能直接读取增益了,而要根据Z变换的结果来求:
K p = lim ⁡ z → 1 G F ( z ) K v = lim ⁡ z → 1 ( 1 − z − 1 ) G F ( z ) T K a = lim ⁡ z → 1 ( 1 − z − 1 ) 2 G F ( z ) T 2 \begin{aligned} &K_p=\lim_{z\to 1}GF(z)\\ &K_v=\lim_{z\to 1} \frac{(1-z^{-1})GF(z)}{T}\\ &K_a=\lim_{z\to 1} \frac{(1-z^{-1})^2GF(z)}{T^2} \end{aligned} Kp=z1limGF(z)Kv=z1limT(1z1)GF(z)Ka=z1limT2(1z1)2GF(z)

解释:

  1. 只有系统稳定才能求稳态误差(计算之前先判稳)
  2. 稳态误差为 ∞ \infty ,并不表示系统不稳定。而是表示系统无法跟踪输入

在这里插入图片描述

动态过程

动态特性主要考虑单位阶跃响应。
和连续情况相似,时域的动态性能指标也包括超调量、上升时间、峰值时间、调节时间等等。
但是各个指标的取值是从系统阶跃响应的采样中得到的,因此根据采样的不同,各个值也会不同。

和连续情况类似,时间响应由闭环极点在Z平面的位置决定。
闭环极点与单位脉冲响应:
在这里插入图片描述
其中 φ ( k ) = ∑ i = 0 n Res [ ϕ ( z ) z k − 1 ] z = z i \displaystyle \varphi(k)=\sum_{i=0}^n \text{Res}[\rm \phi(z)z^{k-1}]_{z=z_i} φ(k)=i=0nRes[ϕ(z)zk1]z=zi
因此求出 φ ( k ) \varphi(k) φ(k),再用Z反变换,就可以求出时间响应。

  1. 脉冲传函只有一个简单的实极点
    在这里插入图片描述
    在这里插入图片描述
    极点越靠近0,衰减越快

  2. 脉冲传函仅含一对共轭复极点
    在这里插入图片描述
    ρ 1 = ∣ a ∣ \rho_1=|a| ρ1=a,两个极点越靠近原点, ρ 1 \rho_1 ρ1越小,衰减越快,过渡过程影响越小。
    θ \theta θ增大,震荡频率增大。 θ = 180 ° \theta=180 \degree θ=180°震荡频率最高。

  3. 脉冲传函所有极点都在Z平面原点
    在这里插入图片描述
    φ ( k ) \varphi(k) φ(k)只有有限项,也即在单位脉冲作用下,响应在 n T nT nT内结束。
    当采样频率一定,该系统具有最短的过渡过程,称为时间最优系统或者最小拍系统
    所有极点都在原点,稳定性最高。但该条件苛刻,且系统参数变化会使控制性能变差。

频率特性

(了解)
连续系统频率特性:沿虚轴看, s = j ω s=j\omega s=
离散系统频率特性:沿单位圆看, z = e j ω T z=e^{j\omega T} z=eT
在这里插入图片描述

  1. ω T \omega T ωT沿单位圆转一圈,频率特性重复一次
  2. ∣ G ( e j ω T ) ∣ |G(e^{j\omega T})| G(eT) ω \omega ω的偶函数,且沿 ω s 2 \frac{\omega_s}{2} 2ωs对称
  3. ∠ G ( e j ω T ) \angle G(e^{j \omega T}) G(eT) ω \omega ω的奇函数
  4. G ( e j ω T ) G(e^{j\omega T}) G(eT)不是 ω \omega ω的有理分式函数,不能画出对数幅频特性。但频率轴仍可以用对数座标。
  5. 离散环节频率特性形状与连续环节相差较大。尤其是T较大时
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值