​sklearn专题五:用逻辑回归​制作评分卡

在银行借贷场景中,评分卡是一种以分数形式来衡量一个客户的信用风险大小的手段,它衡量向别人借钱的人(受信人,需要融资的公司)不能如期履行合同中的还本付息责任,并让借钱给别人的人(授信人,银行等金融机构)造成经济损失的可能性。一般来说,评分卡打出的分数越高,客户的信用越好,风险越小。
这些 借钱的人 “,可能是个人,有可能是有需求的公司和企业。对于企业来说,我们按照融资主体的融资用途,分别使用企业融资模型,现金流融资模型,项目融资模型等模型。而对于个人来说,我们有 四张卡 “来评判个人的信用程度: A 卡, B 卡, C 卡和 F 卡。而众人常说的 评分卡 其实是指 A卡,又称为申请者评级模型,主要应用于相关融资类业务中 新用户的主体评级,即判断金融机构是否应该借钱给一个新用户,如果这个人的风险太高,我们可以拒绝贷款。
一个完整的模型开发,需要有以下流程:

今天我们以个人消费类贷款数据,来为大家简单介绍 A 卡的建模和制作流程,由于时间有限,我们的核心会在 ”数据清洗 模型开发 上。模型检验与评估也非常重要,但是在今天的课中,内容已经太多,我们就不再去赘述了。

3.1 导库,获取数据

%matplotlib inline
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression as LR

 在银行系统中,这个数据通常使来自于其他部门的同事的收集,因此千万别忘记抓住给你数据的人,问问她/他各个项都是什么含义。通常来说,当特征非常多的时候(比如几百个),都会有一个附带的excel或pdf文档给到你,备注了各个特征都是什么含义。这种情况下其实要一个个去看还是非常困难,所以如果特征很多,建议先做降维,具体参考“2.2.2 逻辑回归中的特征工程

data = pd.read_csv(r"E:\数据分析师学习\data\rankingcard.csv"
                   ,engine = 'python'
                   ,index_col=0)

3.2 探索数据与数据预处理

在这一步我们要样本总体的大概情况,比如查看缺失值,量纲是否统一,是否需要做哑变量等等。其实数据的探索和数据的预处理并不是完全分开的,并不一定非要先做哪一个,因此这个顺序只是供大家参考。

3.2.1 去除重复值

现实数据,尤其是银行业数据,可能会存在的一个问题就是样本重复,即有超过一行的样本所显示的所有特征都一样。有时候可能时人为输入重复,有时候可能是系统录入重复,总而言之我们必须对数据进行去重处理。可能有人会说,难道不可能出现说两个样本的特征就是一模一样,但他们是两个样本吗?比如,两个人,一模一样的名字,年龄,性别,学历,工资 ……当特征量很少的时候,这的确是有可能的,但一些指标,比如说家属人数,月收入, 已借有的房地产贷款数量等等,几乎不可能都出现一样。尤其是银行业数据经常是几百个特征,所有特征都一样的
可能性是微乎其微的。即便真的出现了如此极端的情况,我们也可以当作是少量信息损失,将这条记录当作重复值除去。
#去除重复值
data.drop_duplicates(inplace=True)
data.info()

#删除之后千万不要忘记,恢复索引
data.index = range(data.shape[0])
data.info()

 

 3.2.2 填补缺失值

#探索缺失值
data.info()

第二个要面临的问题,就是缺失值。在这里我们需要填补的特征是 收入 家属人数 家属人数 ”缺失很少,仅缺失了大约 2.5% ,可以考虑直接删除,或者使用均值来填补。 收入 缺失了几乎 20% ,并且我们知道, 收入 ”必然是一个对信用评分来说很重要的因素,因此这个特征必须要进行填补。在这里,我们使用均值填补 家属人数
data["NumberOfDependents"].fillna(int(data["NumberOfDependents"].mean()),inplace=True) #如果你选择的是删除那些缺失了2.5%的特征,千万记得恢复索引哟~
data.info()
data.isnull().sum()/data.shape[0]
那字段 " 收入 " 怎么办呢?对于银行数据来说,我们甚至可以有这样的推断:一个来借钱的人应该是会知道, “高收入 或者 稳定收入 于他 /她自己而言会是申请贷款过程中的一个助力,因此如果收入稳定良好的人,肯定会倾向于写上自己的收入情况,那么这些“收入”栏缺失的人,更可能是收入状况不稳定或收入比较低的人。基于这种判断,我们可以用比如说,四分位数来填补缺失值,把所有收入为空的客户都当成是低收入人群。当然了,也有可能这些缺失是银行数据收集过程中的失误,我们并无法判断为什么收入栏会有缺失,所以我们的推断也有可能是不正确的。具体采用什么样的手段填补缺失值,要和业务人员去沟通,观察缺失值是如何产生的。在这里,我们使用随机森林填补 收入
还记得我们用随机森林填补缺失值的案例么?随机森林利用 既然我可以使用 A B C 去预测 Z,那我也可以使用A C Z 去预测 B” 的思想来填补缺失值。对于一个有 n 个特征的数据来说,其中特征 T 有缺失值,我们就把特征 T当作标签,其他的 n-1 个特征和原本的标签组成新的特征矩阵。那对于 T来说,它没有缺失的部分,就是我们的Y_train ,这部分数据既有标签也有特征,而它缺失的部分,只有特征没有标签,就是我们需要预测的部分。
特征 T 不缺失的值对应的其他 n-1 个特征 + 本来的标签: X_train 特征 T 不缺失的值: Y_train 特征 T缺失的值对应的其他 n-1 个特征 + 本来的标签: X_test 特征 T缺失的值:未知,我们需要预测的Y_test这种做法,对于某一个特征大量缺失,其他特征却很完整的情况,非常适用。更具体地,大家可以回到随机森林地课中去复习。
之前我们所做的随机森林填补缺失值的案例中,我们面临整个数据集中多个特征都有缺失的情况,因此要先对特征排序,遍历所有特征来进行填补。这次我们只需要填补 收入 ”一个特征,就无需循环那么麻烦了,可以直接对这一列进行填补。我们来写一个能够填补任何列的函数:
def fill_missing_rf(X,y,to_fill):

    """
    使用随机森林填补一个特征的缺失值的函数

    参数:
    X:要填补的特征矩阵
    y:完整的,没有缺失值的标签
    to_fill:字符串,要填补的那一列的名称
    """

    #构建我们的新特征矩阵和新标签
    df = X.copy()
    fill = df.loc[:,to_fill]
    df = pd.concat([df.loc[:,df.columns != to_fill],pd.DataFrame(y)],axis=1)

    # 找出我们的训练集和测试集
    Ytrain = fill[fill.notnull()]
    Ytest = fill[fill.isnull()]
    Xtrain = df.iloc[Ytrain.index,:]
    Xtest = df.iloc[Ytest.index,:]

    #用随机森林回归来填补缺失值
    from sklearn.ensemble import RandomForestRegressor as rfr
    rfr = rfr(n_estimators=100)
    rfr = rfr.fit(Xtrain, Ytrain)
    Ypredict = rfr.predict(Xtest)

    return Ypredict
  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值